Medical lesion segmentation by combining multimodal images with modality weighted UNet

分割 人工智能 豪斯多夫距离 计算机科学 模式识别(心理学) 医学影像学 模态(人机交互) 反向传播 特征(语言学) 图像分割 深度学习 人工神经网络 哲学 语言学
作者
Xiner Zhu,Yichao Wu,Haoji Hu,Xianwei Zhuang,Jincao Yao,Di Ou,Wei Li,Mei Song,Na Feng,Dong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3692-3704 被引量:5
标识
DOI:10.1002/mp.15610
摘要

Automatic segmentation of medical lesions is a prerequisite for efficient clinic analysis. Segmentation algorithms for multimodal medical images have received much attention in recent years. Different strategies for multimodal combination (or fusion), such as probability theory, fuzzy models, belief functions, and deep neural networks, have also been developed. In this paper, we propose the modality weighted UNet (MW-UNet) and attention-based fusion method to combine multimodal images for medical lesion segmentation.MW-UNet is a multimodal fusion method which is based on UNet, but we use a shallower layer and fewer feature map channels to reduce the amount of network parameters, and our method uses the new multimodal fusion method called fusion attention. It uses weighted sum rule and fusion attention to combine feature maps in intermediate layers. During training, all the weight parameters are updated through backpropagation like other parameters in the network. We also incorporate residual blocks into MW-UNet to further improve segmentation performance. The comparison between the automatic multimodal lesion segmentations and the manual contours was quantified by (1) five metrics including Dice, 95% Hausdorff Distance (HD95), volumetric overlap error (VOE), relative volume difference (RVD), and mean-Intersection-over-Union (mIoU); (2) Number of parameters and flops to calculate the complexity of the network.The proposed method is verified on ZJCHD, which is the data set of contrast-enhanced computed tomography (CECT) for Liver Lesion Segmentation taken from Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China. For accuracy evaluation, we use 120 patients with liver lesions from ZJCHD, of which 100 are used for fourfold cross-validation (CV) and 20 are used for hold-out (HO) test. The mean Dice was 90.55±14.44%$90.55 \pm 14.44\%$ and 89.31±19.07%$89.31 \pm 19.07\%$ for HO and CV tests, respectively. The corresponding HD95, VOE, RVD, and mIoU of the two tests are 1.95 ± 1.83 and 2.67 ± 3.35 mm, 13.11 ± 15.83 and 13.13±18.52%$13.13 \pm 18.52 \%$ , 12.20 ± 18.20 and 13.00±21.82%$13.00 \pm 21.82 \%$ , and 83.79 ± 15.83 and 82.35±20.03%$82.35 \pm 20.03 \%$ . The parameters and flops of our method is 4.04 M and 18.36 G, respectively.The results show that our method performs well on multimodal liver lesion segmentation. It can be easily extended to other multimodal data sets and other networks for multimodal fusion. Our method is the potential to provide doctors with multimodal annotations and assist them with clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助小密母采纳,获得10
刚刚
4秒前
666完成签到,获得积分20
4秒前
李健的小迷弟应助bitter采纳,获得10
4秒前
Dr_zsc完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
666发布了新的文献求助10
7秒前
简简简发布了新的文献求助10
8秒前
8秒前
9秒前
黄景阳完成签到 ,获得积分10
9秒前
生椰拿铁完成签到,获得积分10
10秒前
ssj完成签到,获得积分10
10秒前
白云四季发布了新的文献求助10
11秒前
归尘发布了新的文献求助10
11秒前
11秒前
稳重听双发布了新的文献求助10
11秒前
xia完成签到 ,获得积分10
12秒前
12秒前
Akim应助迷人的帅哥采纳,获得10
13秒前
14秒前
木又应助刘隽轩采纳,获得10
14秒前
量子星尘发布了新的文献求助30
15秒前
简简简完成签到,获得积分10
16秒前
17秒前
action完成签到 ,获得积分10
17秒前
17秒前
学不懂数学完成签到,获得积分10
18秒前
20秒前
Loki完成签到,获得积分10
20秒前
Tokgo完成签到,获得积分10
20秒前
20秒前
20秒前
慧慧发布了新的文献求助10
22秒前
22秒前
稳重听双完成签到,获得积分10
22秒前
22秒前
海中有月完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483