亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical lesion segmentation by combining multimodal images with modality weighted UNet

分割 人工智能 豪斯多夫距离 计算机科学 模式识别(心理学) 医学影像学 模态(人机交互) 反向传播 特征(语言学) 图像分割 深度学习 人工神经网络 哲学 语言学
作者
Xiner Zhu,Yichao Wu,Haoji Hu,Xianwei Zhuang,Jincao Yao,Di Ou,Wei Li,Mei Song,Na Feng,Dong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3692-3704 被引量:5
标识
DOI:10.1002/mp.15610
摘要

Automatic segmentation of medical lesions is a prerequisite for efficient clinic analysis. Segmentation algorithms for multimodal medical images have received much attention in recent years. Different strategies for multimodal combination (or fusion), such as probability theory, fuzzy models, belief functions, and deep neural networks, have also been developed. In this paper, we propose the modality weighted UNet (MW-UNet) and attention-based fusion method to combine multimodal images for medical lesion segmentation.MW-UNet is a multimodal fusion method which is based on UNet, but we use a shallower layer and fewer feature map channels to reduce the amount of network parameters, and our method uses the new multimodal fusion method called fusion attention. It uses weighted sum rule and fusion attention to combine feature maps in intermediate layers. During training, all the weight parameters are updated through backpropagation like other parameters in the network. We also incorporate residual blocks into MW-UNet to further improve segmentation performance. The comparison between the automatic multimodal lesion segmentations and the manual contours was quantified by (1) five metrics including Dice, 95% Hausdorff Distance (HD95), volumetric overlap error (VOE), relative volume difference (RVD), and mean-Intersection-over-Union (mIoU); (2) Number of parameters and flops to calculate the complexity of the network.The proposed method is verified on ZJCHD, which is the data set of contrast-enhanced computed tomography (CECT) for Liver Lesion Segmentation taken from Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China. For accuracy evaluation, we use 120 patients with liver lesions from ZJCHD, of which 100 are used for fourfold cross-validation (CV) and 20 are used for hold-out (HO) test. The mean Dice was 90.55±14.44%$90.55 \pm 14.44\%$ and 89.31±19.07%$89.31 \pm 19.07\%$ for HO and CV tests, respectively. The corresponding HD95, VOE, RVD, and mIoU of the two tests are 1.95 ± 1.83 and 2.67 ± 3.35 mm, 13.11 ± 15.83 and 13.13±18.52%$13.13 \pm 18.52 \%$ , 12.20 ± 18.20 and 13.00±21.82%$13.00 \pm 21.82 \%$ , and 83.79 ± 15.83 and 82.35±20.03%$82.35 \pm 20.03 \%$ . The parameters and flops of our method is 4.04 M and 18.36 G, respectively.The results show that our method performs well on multimodal liver lesion segmentation. It can be easily extended to other multimodal data sets and other networks for multimodal fusion. Our method is the potential to provide doctors with multimodal annotations and assist them with clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助hjjjjj1采纳,获得10
2秒前
尘尘完成签到,获得积分10
7秒前
hjjjjj1完成签到,获得积分10
9秒前
何为完成签到 ,获得积分0
12秒前
笨笨小蚂蚁完成签到 ,获得积分10
12秒前
wanci应助ZHEN采纳,获得10
16秒前
李健的小迷弟应助decade采纳,获得10
18秒前
ZHEN完成签到,获得积分10
24秒前
李金文应助科研通管家采纳,获得10
24秒前
24秒前
31秒前
陶1122发布了新的文献求助10
37秒前
思源应助可个可可采纳,获得10
37秒前
科目三应助陶1122采纳,获得10
44秒前
51秒前
52秒前
可个可可发布了新的文献求助10
58秒前
传奇3应助song采纳,获得10
59秒前
鲤鲤完成签到,获得积分10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
紫亦君发布了新的文献求助10
1分钟前
可个可可完成签到,获得积分20
1分钟前
Runjin_Hu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
紫亦君完成签到,获得积分20
1分钟前
陶1122发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
英姑应助Runjin_Hu采纳,获得10
1分钟前
1分钟前
song发布了新的文献求助10
1分钟前
陶1122发布了新的文献求助10
1分钟前
情怀应助Djdidn采纳,获得10
1分钟前
1分钟前
潇湘雪月完成签到,获得积分10
2分钟前
陶1122发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610770
求助须知:如何正确求助?哪些是违规求助? 4016589
关于积分的说明 12435470
捐赠科研通 3698235
什么是DOI,文献DOI怎么找? 2039335
邀请新用户注册赠送积分活动 1072208
科研通“疑难数据库(出版商)”最低求助积分说明 955865