Medical lesion segmentation by combining multimodal images with modality weighted UNet

分割 人工智能 豪斯多夫距离 计算机科学 模式识别(心理学) 医学影像学 模态(人机交互) 反向传播 特征(语言学) 图像分割 深度学习 人工神经网络 哲学 语言学
作者
Xiner Zhu,Yichao Wu,Haoji Hu,Xianwei Zhuang,Jincao Yao,Di Ou,Wei Li,Mei Song,Na Feng,Dong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3692-3704 被引量:5
标识
DOI:10.1002/mp.15610
摘要

Automatic segmentation of medical lesions is a prerequisite for efficient clinic analysis. Segmentation algorithms for multimodal medical images have received much attention in recent years. Different strategies for multimodal combination (or fusion), such as probability theory, fuzzy models, belief functions, and deep neural networks, have also been developed. In this paper, we propose the modality weighted UNet (MW-UNet) and attention-based fusion method to combine multimodal images for medical lesion segmentation.MW-UNet is a multimodal fusion method which is based on UNet, but we use a shallower layer and fewer feature map channels to reduce the amount of network parameters, and our method uses the new multimodal fusion method called fusion attention. It uses weighted sum rule and fusion attention to combine feature maps in intermediate layers. During training, all the weight parameters are updated through backpropagation like other parameters in the network. We also incorporate residual blocks into MW-UNet to further improve segmentation performance. The comparison between the automatic multimodal lesion segmentations and the manual contours was quantified by (1) five metrics including Dice, 95% Hausdorff Distance (HD95), volumetric overlap error (VOE), relative volume difference (RVD), and mean-Intersection-over-Union (mIoU); (2) Number of parameters and flops to calculate the complexity of the network.The proposed method is verified on ZJCHD, which is the data set of contrast-enhanced computed tomography (CECT) for Liver Lesion Segmentation taken from Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China. For accuracy evaluation, we use 120 patients with liver lesions from ZJCHD, of which 100 are used for fourfold cross-validation (CV) and 20 are used for hold-out (HO) test. The mean Dice was 90.55±14.44%$90.55 \pm 14.44\%$ and 89.31±19.07%$89.31 \pm 19.07\%$ for HO and CV tests, respectively. The corresponding HD95, VOE, RVD, and mIoU of the two tests are 1.95 ± 1.83 and 2.67 ± 3.35 mm, 13.11 ± 15.83 and 13.13±18.52%$13.13 \pm 18.52 \%$ , 12.20 ± 18.20 and 13.00±21.82%$13.00 \pm 21.82 \%$ , and 83.79 ± 15.83 and 82.35±20.03%$82.35 \pm 20.03 \%$ . The parameters and flops of our method is 4.04 M and 18.36 G, respectively.The results show that our method performs well on multimodal liver lesion segmentation. It can be easily extended to other multimodal data sets and other networks for multimodal fusion. Our method is the potential to provide doctors with multimodal annotations and assist them with clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lrcx完成签到 ,获得积分10
5秒前
求助完成签到,获得积分0
6秒前
神外王001完成签到 ,获得积分10
10秒前
沉默的钵钵鸡完成签到 ,获得积分20
12秒前
养花低手完成签到 ,获得积分10
12秒前
climber关注了科研通微信公众号
12秒前
sunnyqqz完成签到,获得积分10
15秒前
merry6669完成签到 ,获得积分10
15秒前
18秒前
搜集达人应助韭菜采纳,获得10
19秒前
喜看财经完成签到,获得积分10
20秒前
ncuwzq完成签到,获得积分10
20秒前
nano完成签到 ,获得积分10
21秒前
岩崖发布了新的文献求助10
26秒前
carly完成签到 ,获得积分10
27秒前
YY完成签到 ,获得积分10
29秒前
qing123完成签到,获得积分10
30秒前
Lucas应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
38秒前
小蘑菇应助科研通管家采纳,获得10
38秒前
Johnson完成签到 ,获得积分10
42秒前
自由寻冬完成签到 ,获得积分10
45秒前
高天雨完成签到 ,获得积分10
46秒前
古炮完成签到 ,获得积分10
1分钟前
谦让疾完成签到,获得积分10
1分钟前
岩崖完成签到,获得积分20
1分钟前
Jimmy_King完成签到 ,获得积分10
1分钟前
ANT完成签到 ,获得积分10
1分钟前
可靠小凝完成签到 ,获得积分10
1分钟前
Loik完成签到,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
June完成签到,获得积分10
1分钟前
1分钟前
光崽是谁完成签到,获得积分10
1分钟前
dong完成签到 ,获得积分10
1分钟前
pwang_lixin完成签到,获得积分10
1分钟前
灵巧安蕾发布了新的文献求助30
1分钟前
谦让汝燕完成签到,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511014
关于积分的说明 11156016
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255