Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment

熔盐 锂(药物) 磷酸铁锂 硝酸锂 盐(化学) 化学 阴极 无机化学 环境污染 材料科学 离子 化学工程 电化学 环境科学 有机化学 物理化学 离子键合 电极 医学 内分泌学 工程类 环境保护
作者
Lei Zhu,Mengmeng Wang,Longping Deng,Ya‐Jun Cheng,Jie Gao,Yonggao Xia
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (11): 3831-3839 被引量:56
标识
DOI:10.1021/acs.iecr.1c05034
摘要

A huge number of spent lithium-ion batteries (LIBs) have caused serious problems such as resource waste and environmental pollution. Lithium iron phosphate (LFP) is one of the major cathode materials in the spent LIBs. It is urgently needed to develop a safe, environmentally friendly, and cost competitive approach to regenerate the LFP cathode collected from the spent LIBs. The nitrate molten salt process has been utilized to regenerate layered cathode materials, which are nevertheless non-compatible with the LFP regeneration process. The LFP crystal lattice will be destroyed during the molten salt process by the oxidative environment, where Fe(II) is oxidized to Fe(III). A new approach is proposed in this work to tackle this issue, where a low-temperature molten salt process is coupled with a reductive environment to suppress oxidation of Fe(II). In detail, lithium nitrate is used as a molten salt medium and lithium source simultaneously. Sucrose is used as a carbon source to provide a reductive environment. Through a short molten-salt relithiation step at 300 °C and further annealing process at 650 °C, LFP particles with a lithium-deficient and damaged structure can be successfully recovered. The rapid lithium replenishment process exposes more (101) crystal planes facilitating lithium-ion transportation. As a result, the regenerated LFP delivers a specific capacity of 145 mAh g–1 at 0.5C, which is more than a 13% increase relative to the spent LFP and has a better rate performance than pristine LFP at 5C. In addition, we also point out that the LFP is converted to Li3PO4 with the increase in lithium source and the extension of treatment time. This work provides a new promising way to regenerate spent LFP cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
petli完成签到,获得积分10
刚刚
Aloha完成签到,获得积分10
刚刚
1秒前
5High_0完成签到 ,获得积分10
1秒前
鲤鱼寻菡完成签到,获得积分10
1秒前
1秒前
约翰完成签到,获得积分10
3秒前
Myx完成签到,获得积分10
4秒前
零度沸腾完成签到 ,获得积分10
4秒前
6秒前
Salamenda完成签到,获得积分10
7秒前
jason完成签到,获得积分10
9秒前
活泼的烙完成签到 ,获得积分10
13秒前
小熊应助Yyy采纳,获得10
15秒前
YY完成签到,获得积分10
16秒前
qhy完成签到,获得积分10
17秒前
树袋熊完成签到,获得积分10
19秒前
Jiangshan完成签到 ,获得积分10
19秒前
iuhgnor发布了新的文献求助10
19秒前
19秒前
21秒前
鲤鱼灵阳完成签到,获得积分10
22秒前
圈圈完成签到,获得积分10
23秒前
sysi完成签到,获得积分10
23秒前
sunflower完成签到,获得积分10
23秒前
御风完成签到,获得积分10
25秒前
嘻嘻哈哈啊完成签到 ,获得积分10
26秒前
佳期如梦完成签到 ,获得积分10
26秒前
zqq完成签到,获得积分10
27秒前
BigBadWolf发布了新的文献求助30
29秒前
2010完成签到,获得积分10
29秒前
pawpaw009完成签到,获得积分10
30秒前
心灵美鑫完成签到 ,获得积分10
31秒前
lefora完成签到,获得积分10
34秒前
34秒前
华仔应助精神的精神病采纳,获得10
34秒前
Manyiu发布了新的文献求助10
35秒前
36秒前
牛诗悦完成签到,获得积分10
42秒前
小辣椒完成签到 ,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769049
捐赠科研通 2440325
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792