计算机科学
影子(心理学)
合成孔径雷达
人工智能
预处理器
计算机视觉
雷达
自动目标识别
水准点(测量)
模式识别(心理学)
电信
地质学
心理学
大地测量学
心理治疗师
作者
Jae-Ho Choi,Myung‐Jun Lee,Nam-Hoon Jeong,Geon Lee,Kyung‐Tae Kim
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-17
被引量:22
标识
DOI:10.1109/tgrs.2022.3165849
摘要
Synthetic aperture radar (SAR) systems, which operate under a slant-viewing geometry, inevitably entail shadow regions in the resulting radar image. Such shadow profiles contain backprojected signatures of an object's configuration as with target profiles; however, they are rarely utilized in current SAR-based recognition techniques. A major challenge in leveraging shadow information together lies in the intrinsic limitation of current single-pathway approaches, in which the target and shadow cannot be addressed simultaneously because of their incompatible domain properties. Hence, we herein propose novel solutions that enable the successful fusion of target and shadow regions within SAR for the first time. First, we devise new image preprocessing techniques specifically customized for shadows to compensate for their unique domain characteristics, which are distinct from the target. Second, we introduce a parallelized SAR processing mechanism such that a network can independently extract features oriented toward each conflicting modality. Third, adaptive fusion strategies are proposed for the optimal integration of features from each region while considering their relative significance layer by layer. Extensive experiments on public benchmark datasets demonstrate that the proposed framework allows a network to effectively employ shadow signatures and targets, thereby outperforming previous methods significantly for all setups.
科研通智能强力驱动
Strongly Powered by AbleSci AI