数学
组合数学
发电机(电路理论)
算术
离散数学
物理
功率(物理)
量子力学
作者
Xiaoshan Quan,Qin Yue,Liqin Hu
出处
期刊:Advances in Mathematics of Communications
[American Institute of Mathematical Sciences]
日期:2022-04-12
卷期号:18 (3): 828-841
被引量:2
摘要
Let $ G $ be a generator matrix of a linear code $ \mathcal C $ and $ [G: I_k] $ be a generator matrix of its extendable linear code $ \mathcal {C}' $, we call $ \mathcal C $ is optimally (almost optimally) extendable if $ d(\mathcal C^\perp) = d({\mathcal C'}^\perp) $($ d(\mathcal C^\perp) $ is very close to $ d({\mathcal C'}^\perp) $, respectively), where $ d(\mathcal C^\perp) $ is the minimal distance of the dual code of $ \mathcal C $. In order to safeguard the susceptible information lay in registers oppose SCA and FIA, it is useful to construct an optimally extendable linear code $ \mathcal C $. In this paper, we construct three classes of (almost) optimally extendable linear codes: (1) irreducible cyclic codes; (2) maximum-distance-separable (MDS) codes and near maximum-distance-separable (NMDS) codes.
科研通智能强力驱动
Strongly Powered by AbleSci AI