Elucidating the catalytic mechanism of a bacterial deglycase essential for utilization of fructose‐lysine, an Amadori product

阿玛多利重排 生物化学 化学 赖氨酸 美拉德反应 肠沙门氏菌 果糖 大肠杆菌 乳糖 麦芽糖 氨基酸 糖基化 基因 受体
作者
Sravya Kovvali,Angela Di Capua,Vicki H. Wysocki,Charles E. Bell,Venkat Gopalan
出处
期刊:The FASEB Journal [Wiley]
卷期号:36 (S1) 被引量:1
标识
DOI:10.1096/fasebj.2022.36.s1.r3767
摘要

Amadori products are stable sugar-amino acid conjugates that are formed non-enzymatically via the Maillard reaction that takes place during preparation of foods by heating, roasting, and drying. Fructose-lysine (F-Lys, ε-conjugated) is one of the most abundant Amadori compounds in processed foods and is a key intermediate in the formation of advanced glycation end products, which in turn are implicated in inflammation and disease. The variation among humans in their ability to metabolize F-Lys has motivated an examination of the inter-individual differences in gut microbial taxa and the enzymes that help convert F-Lys into short-chain fatty acids or cellular energy. Results from such studies are also expected to yield insights into whether F-Lys utilization by bacterial pathogens (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium) might offer them a competitive edge. Either during or after bacterial uptake, F-Lys is phosphorylated to form 6-phosphofructose-lysine (6-P-F-Lys). FrlB, a deglycase, converts 6-P-F-Lys to L-lysine and glucose 6-phosphate, with the latter feeding into glycolysis. Since the catalytic mechanism of FrlB has not been studied, we sought to obtain a high-resolution structure of Salmonella FrlB ± 6-P-F-Lys and identify the active-site residues essential for catalysis. After overexpression and purification of recombinant Salmonella FrlB, we obtained its 1.9 Å crystal structure. FrlB exists as a dimer with two identifiable inter-subunit active sites. In the absence of a co-crystal structure of FrlB with 6-P-F-Lys, we took two different strategies to delineate its catalytic pocket. First, we observed that the phosphosugar-binding module-called the sugar isomerase (SIS) domain in FrlB-shared sequence similarity with the eponymous domain in E. coli glucosamine 6-phosphate synthase (GlmS), which generates glucosamine 6-phosphate from fructose 6-phosphate (F-6-P) and glutamine. Overlaying the tertiary structures of Salmonella FrlB with E. coli GlmS, which had previously been co-crystallized with F-6-P, helped identify FrlB residues that could be involved in 6-P-F-Lys binding and cleavage. Second, sequence alignment of Salmonella FrlB with FraB, a related and biochemically characterized deglycase required for metabolism of fructose-asparagine (an Amadori compound) pinpointed residues that could act as a general acid and a general base during deglycation. From these comparative analyses, six candidate residues in FrlB were individually mutated to alanine or another conservative substitution, and the mutant derivatives were purified using affinity chromatography. Our differential scanning fluorimetry studies revealed that all the mutants exhibit thermal stability nearly identical to wild-type FrlB; importantly, our native mass spectrometry (nMS) studies confirmed that the mutations did not impair the ability of these mutants to form a stable dimer. A spectrophotometric coupled assay was employed to measure the activity of FrlB and the panel of mutants. When a mutation dampened or eliminated deglycase activity, nMS was leveraged to distinguish between a defect in substrate binding versus cleavage. Collectively, our results provide a platform for defining the active site and catalytic mechanism of FrlB even while highlighting the value of exploiting structures of distant homologs to advance structure-function relationship studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
吃鱼鱼鱼完成签到,获得积分10
1秒前
2秒前
松桕柏完成签到,获得积分10
2秒前
3秒前
刻苦的三问应助思玉采纳,获得10
3秒前
3秒前
wuti发布了新的文献求助20
3秒前
无花果应助刘天强采纳,获得10
4秒前
bubbull发布了新的文献求助10
4秒前
清樾完成签到 ,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
驱蚊器发布了新的文献求助30
5秒前
高高发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
ZL张莉发布了新的文献求助30
6秒前
6秒前
丘比特应助积极紫翠采纳,获得10
6秒前
Liu完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助研究生采纳,获得10
7秒前
英姑应助全焱采纳,获得10
8秒前
小蘑菇应助CDI和LIB采纳,获得10
8秒前
wanci应助兑现采纳,获得10
8秒前
自由傲晴完成签到 ,获得积分10
9秒前
陶醉西牛发布了新的文献求助10
10秒前
fox发布了新的文献求助10
10秒前
妙旋克里斯完成签到,获得积分10
10秒前
10秒前
纪思奇完成签到 ,获得积分10
11秒前
李朋发布了新的文献求助10
11秒前
谦让白秋完成签到,获得积分10
11秒前
12秒前
12秒前
bubbull完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403