清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Fusion Method for Generating Surface Soil Moisture Data With High Accuracy, High Spatial Resolution, and High Spatio‐Temporal Continuity

均方误差 遥感 环境科学 传感器融合 图像分辨率 相关系数 含水量 计算机科学 数学 统计 人工智能 机器学习 地质学 岩土工程
作者
Shuzhe Huang,Xiang Zhang,Nengcheng Chen,Hongliang Ma,Peng Fu,Jianzhi Dong,Xihui Gu,Won‐Ho Nam,Lei Xu,Gerhard Rab,Dev Niyogi
出处
期刊:Water Resources Research [Wiley]
卷期号:58 (5) 被引量:22
标识
DOI:10.1029/2021wr030827
摘要

Abstract Surface soil moisture (SSM) has a considerable impact on land‐atmosphere exchanges of water and energy fluxes. However, due to the inherent deficiencies of remotely sensed data (e.g., cloud contamination in thermal remote sensing and coarse resolutions for microwave remote sensing), none of the current algorithms alone can provide daily and seamless field‐scale (30 m) SSM information. To fill the gap, we proposed a novel SSM fusion framework to Generate high Resolution, Accurate, Seamless data using Point‐Surface fusion (GRASPS) based on remotely sensed, reanalysis, and in‐situ data sets. First, 30 m seamless continuous SSM correlated variables (land surface temperature, NDVI, and albedo) were downscaled by enhanced spatial and temporal adaptive reflectance fusion model. Then, downscaled auxiliary variables and other background variables were input into a deep learning model to produce 30 m daily and seamless SSM fields. To further improve the SSM estimation accuracy, a pixel classification‐based bias correction method was developed. The GRASPS method was validated over an in situ soil moisture sensor network (HOAL network) in Austria. The average Pearson correlation coefficient, root mean square error (RMSE), unbiased RMSE (ubRMSE), bias, and mean absolute error (MAE) over all validation sites achieved 0.78, 0.048, 0.033, −0.001, and 0.041 , respectively. After bias correction, RMSE, ubRMSE, bias, and MAE decreased by 13%, 7%, 22%, and 18%, respectively. The proposed method maximizes the potential of data fusion and deep learning in generating field‐scale seamless SSM, which is promising for fine‐scale studies and applications in agricultural, hydrological, and environmental domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
6秒前
8秒前
10秒前
得咎发布了新的文献求助10
23秒前
35秒前
研友_8Y26PL完成签到 ,获得积分10
39秒前
50秒前
57秒前
oscar完成签到,获得积分10
2分钟前
2分钟前
肆肆完成签到,获得积分10
2分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
2分钟前
muriel完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
默默孱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
CSun完成签到,获得积分10
5分钟前
5分钟前
5分钟前
CSun发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
陈媛发布了新的文献求助10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176