A Novel Fusion Method for Generating Surface Soil Moisture Data With High Accuracy, High Spatial Resolution, and High Spatio‐Temporal Continuity

均方误差 遥感 环境科学 传感器融合 图像分辨率 相关系数 含水量 计算机科学 数学 统计 人工智能 机器学习 地质学 岩土工程
作者
Shuzhe Huang,Xiang Zhang,Nengcheng Chen,Hongliang Ma,Peng Fu,Jianzhi Dong,Xihui Gu,Won‐Ho Nam,Lei Xu,Gerhard Rab,Dev Niyogi
出处
期刊:Water Resources Research [Wiley]
卷期号:58 (5) 被引量:22
标识
DOI:10.1029/2021wr030827
摘要

Abstract Surface soil moisture (SSM) has a considerable impact on land‐atmosphere exchanges of water and energy fluxes. However, due to the inherent deficiencies of remotely sensed data (e.g., cloud contamination in thermal remote sensing and coarse resolutions for microwave remote sensing), none of the current algorithms alone can provide daily and seamless field‐scale (30 m) SSM information. To fill the gap, we proposed a novel SSM fusion framework to Generate high Resolution, Accurate, Seamless data using Point‐Surface fusion (GRASPS) based on remotely sensed, reanalysis, and in‐situ data sets. First, 30 m seamless continuous SSM correlated variables (land surface temperature, NDVI, and albedo) were downscaled by enhanced spatial and temporal adaptive reflectance fusion model. Then, downscaled auxiliary variables and other background variables were input into a deep learning model to produce 30 m daily and seamless SSM fields. To further improve the SSM estimation accuracy, a pixel classification‐based bias correction method was developed. The GRASPS method was validated over an in situ soil moisture sensor network (HOAL network) in Austria. The average Pearson correlation coefficient, root mean square error (RMSE), unbiased RMSE (ubRMSE), bias, and mean absolute error (MAE) over all validation sites achieved 0.78, 0.048, 0.033, −0.001, and 0.041 , respectively. After bias correction, RMSE, ubRMSE, bias, and MAE decreased by 13%, 7%, 22%, and 18%, respectively. The proposed method maximizes the potential of data fusion and deep learning in generating field‐scale seamless SSM, which is promising for fine‐scale studies and applications in agricultural, hydrological, and environmental domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
屠甜甜发布了新的文献求助10
1秒前
文静煜城完成签到,获得积分10
1秒前
111完成签到 ,获得积分10
2秒前
orange发布了新的文献求助10
3秒前
4秒前
好好完成签到,获得积分10
4秒前
文静煜城发布了新的文献求助10
4秒前
吴龙完成签到,获得积分10
5秒前
研友_VZG7GZ应助闪闪的夜阑采纳,获得10
5秒前
小天使的使完成签到,获得积分10
5秒前
6秒前
duanqianqian发布了新的文献求助10
7秒前
9秒前
10秒前
明亮无颜发布了新的文献求助30
10秒前
ZHY发布了新的文献求助10
11秒前
orixero应助zjuroc采纳,获得10
12秒前
Yile发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
屠甜甜完成签到,获得积分20
15秒前
搞怪远侵完成签到 ,获得积分10
16秒前
JamesPei应助芷芷芷采纳,获得10
17秒前
丘比特应助ZHY采纳,获得10
18秒前
18秒前
魔幻的夜柳完成签到,获得积分10
22秒前
23秒前
晓旭完成签到 ,获得积分10
24秒前
25秒前
路痴完成签到,获得积分10
26秒前
duanqianqian完成签到,获得积分10
27秒前
valley完成签到,获得积分10
28秒前
zjuroc发布了新的文献求助10
28秒前
Ilan应助orange采纳,获得10
29秒前
30秒前
kannar完成签到,获得积分10
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744967
求助须知:如何正确求助?哪些是违规求助? 3287893
关于积分的说明 10055978
捐赠科研通 3004044
什么是DOI,文献DOI怎么找? 1649372
邀请新用户注册赠送积分活动 785316
科研通“疑难数据库(出版商)”最低求助积分说明 751001