Glioblastoma Recurrence Versus Radiotherapy Injury

医学 峰度 接收机工作特性 核医学 放射治疗 胶质母细胞瘤 组织病理学 放射科 磁共振弥散成像 磁共振成像 内科学 病理 统计 数学 癌症研究
作者
Haodan Dang,Jinming Zhang,Ruimin Wang,Jiajin Liu,Huaping Fu,Mu Lin,Baixuan Xu
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
卷期号:47 (6): e428-e436 被引量:8
标识
DOI:10.1097/rlu.0000000000004167
摘要

To evaluate the diagnostic potential of decision-tree model of diffusion kurtosis imaging (DKI) and 11C-methionine (11C-MET) PET, for the differentiation of radiotherapy (RT) injury from glioblastoma recurrence.Eighty-six glioblastoma cases with suspected lesions after RT were retrospectively enrolled. Based on histopathology or follow-up, 48 patients were diagnosed with local glioblastoma recurrence, and 38 patients had RT injury between April 2014 and December 2019. All the patients underwent PET/MRI examinations. Multiple parameters were derived based on the ratio of tumor to normal control (TNR), including SUVmax and SUVmean, mean value of kurtosis and diffusivity (MK, MD) from DKI, and histogram parameters. The diagnostic models were established by decision trees. Receiver operating characteristic analysis was used for evaluating the diagnostic accuracy of each independent parameter and all the diagnostic models.The intercluster correlations of DKI, PET, and texture parameters were relatively weak, whereas the intracluster correlations were strong. Compared with models of DKI alone (sensitivity =1.00, specificity = 0.70, area under the curve [AUC] = 0.85) and PET alone (sensitivity = 0.83, specificity = 0.90, AUC = 0.89), the combined model demonstrated the best diagnostic accuracy (sensitivity = 1.00, specificity = 0.90, AUC = 0.95).Diffusion kurtosis imaging, 11C-MET PET, and histogram parameters provide complementary information about tissue. The decision-tree model combined with these parameters has the potential to further increase diagnostic accuracy for the discrimination between RT injury and glioblastoma recurrence over the standard Response Assessment in Neuro-Oncology criteria. 11C-MET PET/MRI may thus contribute to the management of glioblastoma patients with suspected lesions after RT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄怀逸完成签到 ,获得积分10
刚刚
刘立凡完成签到,获得积分10
1秒前
cao完成签到 ,获得积分10
1秒前
记忆里的阳光完成签到,获得积分10
2秒前
keyana25完成签到,获得积分10
2秒前
儒雅儒雅完成签到 ,获得积分10
2秒前
彭于晏应助杨怂怂采纳,获得10
3秒前
面包完成签到,获得积分10
4秒前
4秒前
lby完成签到 ,获得积分10
4秒前
skmksd完成签到,获得积分10
5秒前
finger完成签到,获得积分10
5秒前
YHY完成签到,获得积分10
5秒前
和尘同光完成签到,获得积分10
6秒前
楠楠完成签到 ,获得积分10
6秒前
江林林发布了新的文献求助10
6秒前
Orange应助猛烈的小猫采纳,获得10
6秒前
mayamaya完成签到,获得积分10
6秒前
ZhijunXiang完成签到,获得积分10
6秒前
若安在完成签到,获得积分10
6秒前
SAXA完成签到,获得积分10
8秒前
Jj完成签到,获得积分10
9秒前
开放磬完成签到,获得积分10
9秒前
还没想好完成签到,获得积分10
9秒前
高天雨完成签到 ,获得积分10
10秒前
幼稚园搞磕研完成签到,获得积分10
10秒前
10秒前
小飞侠来咯完成签到,获得积分10
10秒前
chenxu完成签到,获得积分10
10秒前
淡定碧玉完成签到 ,获得积分10
11秒前
11秒前
11秒前
xiaoruixue完成签到,获得积分10
11秒前
cheng完成签到,获得积分10
11秒前
kakaC完成签到,获得积分10
12秒前
xmhxpz完成签到,获得积分10
12秒前
乖猫要努力应助张兰采纳,获得10
12秒前
12秒前
dake完成签到,获得积分10
13秒前
cccc完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968637
求助须知:如何正确求助?哪些是违规求助? 3513552
关于积分的说明 11168493
捐赠科研通 3248935
什么是DOI,文献DOI怎么找? 1794554
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804691