摘要
In the last decade among the current cancers, skin cancer is emerging and rising rapidly. The melanoma and non-melanoma type contributed mainly to skin cancer and is considered metastatic and deadly. Extreme exposure to ultra-violet radiation (depletion of the ozone layer or industry exposure) leads to an enormous rise in cases of skin cancers.The previous therapy includes surgery, chemotherapy, and radiation which are invasive methods and greatly associated with several adverse effects on healthy tissues. The current review aimed to explore the identification of novel biomarkers (miRNA, S100 Family and BRAF, etc.) and nanotechnology-based approaches for the prevention, prognosis, diagnosis, and effective therapy for all types of skin cancers.The results showed that several biomarkers are capable of recognizing the presence of melanoma and thereby improving the survival rate. The lipid-based nanocarriers (liposomes, SLN, NLC) for hydrophobic drugs serve as the best carrier and provide biocompatibility and stability to the antitumor agents for topical delivery. Meanwhile, Vesicular nanocarriers (niosomes, ethosomes) are gaining significance because of nanosize scale, higher penetration ability through stratum corneum, greater stability, and non-toxic in nature. Concerning the polymer-based approaches (micelle, dendrimer, and hydrogels) offer additional benefits like targeted action, controlled delivery, longer circulation time, and high loading efficiency. Approaches of nanoparticles and carbon-based approaches (nanotubes, graphene oxide) are widely utilized for possessing biosensing and diagnostic properties. Moreover, the recently utilized microneedle technique along with immunotherapy gain tremendous significance for providing synergistic pathways and is capable of eradicating the melanoma cells from the body by stimulating the immune system.The prompt recognition of melanoma or non-melanoma type through novel biomarkers significantly enhances the survival rate in many patients. Upon identification, the nanocarrier-based approaches showed marked efficacy in treating several types of skin cancer.