The Role of Long‐Alkyl‐Group Spacers in Glycolated Copolymers for High Performance Organic Electrochemical Transistors

材料科学 烷基 电化学 晶体管 接受者 纳米技术 组合化学 化学物理
作者
Ellasia Tan,Jingwan Kim,Katherine Stewart,Charalampos Pitsalidis,Sooncheol Kwon,Nicholas Siemons,Jehan Kim,Yifei Jiang,Jarvist M. Frost,Drew Pearce,James E. Tyrrell,Jenny Nelson,Roisin M. Owens,Yun‐Hi Kim,Ji‐Seon Kim
出处
期刊:Advanced Materials [Wiley]
卷期号:: 2202574-2202574
标识
DOI:10.1002/adma.202202574
摘要

Semiconducting polymers with oligoethylene glycol sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. Herein, we synthesize and characterize new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene-based (TTT or TTVTT) donor units for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to DPP unit acts as a spacer distancing the oligoethylene glycol from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates the hole polaron formation more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics (MD) simulation. We conclude that these simultaneously high electronic and ionic charge transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers. This article is protected by copyright. All rights reserved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助秋冬采纳,获得10
3秒前
万能图书馆应助阿Q采纳,获得10
5秒前
明理问柳完成签到,获得积分10
6秒前
hucanming完成签到,获得积分10
7秒前
7秒前
紫色de泡沫完成签到,获得积分10
9秒前
叮叮车完成签到 ,获得积分20
11秒前
zho关闭了zho文献求助
11秒前
充电宝应助高高芷天采纳,获得10
11秒前
结构优化小白完成签到,获得积分20
12秒前
冷傲路灯完成签到 ,获得积分10
13秒前
蜉蝣完成签到,获得积分10
13秒前
慕青应助刻痕采纳,获得10
14秒前
绿野仙踪完成签到,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
genomed应助科研通管家采纳,获得10
15秒前
oceanao应助科研通管家采纳,获得10
15秒前
15秒前
oceanao应助科研通管家采纳,获得10
15秒前
wanghuiyanyx完成签到,获得积分10
16秒前
善学以致用应助wingmay采纳,获得10
17秒前
17秒前
19秒前
爽爽发布了新的文献求助10
21秒前
21秒前
所所应助牧瞻采纳,获得10
26秒前
刻痕发布了新的文献求助10
27秒前
28秒前
HonglinGao发布了新的文献求助10
33秒前
仰望喀纳斯的星空完成签到,获得积分10
33秒前
oceanao应助结构优化小白采纳,获得10
34秒前
李健应助阳性苗采纳,获得10
34秒前
36秒前
一一yi完成签到,获得积分10
36秒前
第五元素完成签到,获得积分10
38秒前
赘婿应助HonglinGao采纳,获得10
39秒前
43秒前
叶叶叶完成签到,获得积分10
43秒前
kiminonawa应助yan采纳,获得30
45秒前
柠檬完成签到,获得积分10
46秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168334
求助须知:如何正确求助?哪些是违规求助? 2819660
关于积分的说明 7927409
捐赠科研通 2479535
什么是DOI,文献DOI怎么找? 1320994
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460