Experimental quantum adversarial learning with programmable superconducting qubits

量子位元 计算机科学 超导量子计算 量子 对抗制 超导电性 人工智能 物理 量子力学
作者
Wenhui Ren,Weikang Li,Shibo Xu,Ke Wang,Wenjie Jiang,Feitong Jin,Xuhao Zhu,Jiachen Chen,Zixuan Song,Peng Fei Zhang,Hang Dong,Xu Zhang,Jinfeng Deng,Yu Gao,Chuanyu Zhang,Yaozu Wu,Bing Zhang,Qiujiang Guo,Hekang Li,Zhen Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2204.01738
摘要

Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $μ$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助yongzaizhuigan采纳,获得10
刚刚
jing发布了新的文献求助10
2秒前
咯咚完成签到 ,获得积分10
6秒前
whisper完成签到 ,获得积分10
8秒前
薛定谔的猫完成签到,获得积分10
10秒前
jing完成签到,获得积分10
11秒前
lym97完成签到 ,获得积分10
13秒前
14秒前
daihq3完成签到,获得积分10
15秒前
鹬鸱发布了新的文献求助10
19秒前
19秒前
21秒前
mehplamnha完成签到,获得积分10
21秒前
orixero应助jing采纳,获得10
22秒前
Lucas应助小岚乖乖采纳,获得10
23秒前
23秒前
24秒前
侯焱发布了新的文献求助10
25秒前
baibai发布了新的文献求助10
26秒前
27秒前
张冉冉应助靓丽铅笔采纳,获得10
28秒前
科研通AI5应助听话的捕采纳,获得10
28秒前
28秒前
发仔发布了新的文献求助10
28秒前
李存发布了新的文献求助10
29秒前
dhyzf1214发布了新的文献求助10
30秒前
31秒前
橙色小瓶子完成签到,获得积分10
32秒前
Mark完成签到 ,获得积分10
34秒前
李健应助李存采纳,获得10
34秒前
科研通AI2S应助dhyzf1214采纳,获得10
34秒前
童宝发布了新的文献求助10
35秒前
刘柳发布了新的文献求助30
36秒前
席涑完成签到,获得积分10
37秒前
等待的易梦完成签到 ,获得积分10
37秒前
科研通AI5应助糊涂的板栗采纳,获得10
37秒前
JYC完成签到,获得积分10
38秒前
可靠的线虫完成签到 ,获得积分10
38秒前
只谈风月应助小木采纳,获得10
39秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755028
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104457
捐赠科研通 3012915
什么是DOI,文献DOI怎么找? 1654852
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753233