Experimental quantum adversarial learning with programmable superconducting qubits

量子位元 计算机科学 超导量子计算 量子 对抗制 超导电性 人工智能 物理 量子力学
作者
Wenhui Ren,Weikang Li,Shibo Xu,Ke Wang,Wenjie Jiang,Feitong Jin,Xuhao Zhu,Jiachen Chen,Zixuan Song,Peng Fei Zhang,Hang Dong,Xu Zhang,Jinfeng Deng,Yu Gao,Chuanyu Zhang,Yaozu Wu,Bing Zhang,Qiujiang Guo,Hekang Li,Zhen Wang,Jacob Biamonte,Chao Song,Dong-Ling Deng,Haijing Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2204.01738
摘要

Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $μ$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grace完成签到 ,获得积分10
刚刚
小鸡炖蘑菇关注了科研通微信公众号
1秒前
1秒前
1秒前
1秒前
2秒前
lolo驳回了本本应助
3秒前
潇潇雨落完成签到,获得积分10
3秒前
我是老大应助acuter采纳,获得10
4秒前
Pia唧发布了新的文献求助10
4秒前
可爱的怀蕾完成签到,获得积分20
4秒前
5秒前
楚楚爸完成签到,获得积分10
5秒前
5秒前
5秒前
烟熏柿子完成签到,获得积分20
7秒前
wd完成签到,获得积分20
7秒前
潇潇雨落发布了新的文献求助10
8秒前
酷波er应助笨笨凡之采纳,获得10
8秒前
烟花应助DHY采纳,获得10
8秒前
9秒前
Hanayu完成签到 ,获得积分10
9秒前
1781266完成签到,获得积分10
10秒前
李健的小迷弟应助木风落采纳,获得10
10秒前
晓星残月完成签到,获得积分10
10秒前
wd发布了新的文献求助10
10秒前
英姑应助Grace采纳,获得10
10秒前
11秒前
烟熏柿子发布了新的文献求助10
11秒前
所所应助漂亮送终采纳,获得10
12秒前
yaoguang完成签到,获得积分10
12秒前
桐桐应助整齐冬瓜采纳,获得10
12秒前
honghong完成签到 ,获得积分20
13秒前
jjj完成签到,获得积分10
14秒前
慕青应助潇潇雨落采纳,获得10
14秒前
15秒前
悲凉的艳发布了新的文献求助10
15秒前
111完成签到,获得积分10
15秒前
16秒前
最好的发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866