Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摸猪头完成签到,获得积分20
刚刚
whh完成签到,获得积分10
1秒前
认真大雁完成签到 ,获得积分10
1秒前
蜉蝣发布了新的文献求助30
1秒前
顾矜应助zhuzhu采纳,获得10
2秒前
2秒前
2秒前
天天快乐应助重要不评采纳,获得10
2秒前
2秒前
2秒前
青黛完成签到 ,获得积分10
3秒前
David发布了新的文献求助20
3秒前
爱听歌的飞双完成签到,获得积分10
3秒前
ZTK发布了新的文献求助10
4秒前
4秒前
Akim应助Singhi采纳,获得10
4秒前
乐糖完成签到 ,获得积分10
5秒前
6秒前
朴素海亦发布了新的文献求助10
6秒前
6秒前
Lx发布了新的文献求助30
7秒前
汉堡包应助Page_Page采纳,获得10
8秒前
彭于晏应助asdxsweef采纳,获得10
9秒前
zyl完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
AI完成签到 ,获得积分10
12秒前
linkin完成签到 ,获得积分10
12秒前
香蕉觅云应助同频共振采纳,获得10
12秒前
烂漫幻灵发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
li完成签到,获得积分10
16秒前
哎呀发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362