亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
小泽发布了新的文献求助30
24秒前
25秒前
25秒前
43秒前
44秒前
45秒前
45秒前
ying818k发布了新的文献求助10
48秒前
moxiang发布了新的文献求助10
52秒前
andrele发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
852应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
刘海清发布了新的文献求助10
1分钟前
1分钟前
Ccz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1793480753发布了新的文献求助10
2分钟前
南方完成签到 ,获得积分10
2分钟前
2分钟前
合适的初蓝完成签到 ,获得积分10
2分钟前
moxiang完成签到,获得积分10
2分钟前
尼古拉斯铁柱完成签到 ,获得积分10
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
2分钟前
1793480753完成签到,获得积分10
2分钟前
2分钟前
Yuang完成签到 ,获得积分10
2分钟前
Sherry完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375