亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助三口一头猪采纳,获得10
10秒前
热情的橙汁完成签到,获得积分10
29秒前
37秒前
47秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
菠萝完成签到,获得积分10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
小蘑菇应助菠萝采纳,获得10
1分钟前
1分钟前
头孢西丁发布了新的文献求助10
2分钟前
KachiRyoji应助容若采纳,获得10
2分钟前
2分钟前
Sunnpy完成签到 ,获得积分10
3分钟前
斯文败类应助容若采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
苏震坤发布了新的文献求助10
3分钟前
3分钟前
KachiRyoji应助容若采纳,获得10
3分钟前
3分钟前
4分钟前
jinyue发布了新的文献求助10
4分钟前
谵妄姿态发布了新的文献求助30
4分钟前
传奇3应助超级灰狼采纳,获得10
4分钟前
4分钟前
谵妄姿态完成签到,获得积分10
4分钟前
超级灰狼发布了新的文献求助10
4分钟前
科研通AI5应助wzhtnl采纳,获得10
4分钟前
后陡门爱神完成签到 ,获得积分10
4分钟前
科研通AI6应助容若采纳,获得10
5分钟前
5分钟前
Perry完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI6应助容若采纳,获得10
5分钟前
5分钟前
我刷的烧饼贼亮完成签到 ,获得积分10
5分钟前
obedVL完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611441
求助须知:如何正确求助?哪些是违规求助? 4016962
关于积分的说明 12435927
捐赠科研通 3698837
什么是DOI,文献DOI怎么找? 2039748
邀请新用户注册赠送积分活动 1072548
科研通“疑难数据库(出版商)”最低求助积分说明 956235