Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lily发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
徐佳达完成签到,获得积分10
1秒前
摇摇七玺发布了新的文献求助10
2秒前
wanci应助木木木采纳,获得10
2秒前
秋刀鱼发布了新的文献求助30
2秒前
曾经的秋寒完成签到,获得积分10
2秒前
2秒前
2秒前
黄钦清发布了新的文献求助10
2秒前
顾矜应助ss采纳,获得10
3秒前
Gao.完成签到,获得积分20
3秒前
俞秋烟发布了新的文献求助10
3秒前
小小阿杰完成签到,获得积分10
3秒前
3秒前
阔达的傲MUMU完成签到 ,获得积分10
3秒前
zzt发布了新的文献求助10
4秒前
drchen发布了新的文献求助10
4秒前
4秒前
wuji2077完成签到,获得积分10
5秒前
章半仙发布了新的文献求助10
5秒前
NexusExplorer应助我爱学习采纳,获得10
6秒前
西梅完成签到,获得积分10
6秒前
Hello应助song采纳,获得10
6秒前
顾矜应助王贤平采纳,获得10
7秒前
8秒前
桐桐应助尊敬的猕猴桃采纳,获得50
8秒前
Owen应助爱撒娇的怜珊采纳,获得10
8秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助青枣不甜采纳,获得20
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
情怀应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406