Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助zdl采纳,获得10
刚刚
szj发布了新的文献求助10
1秒前
1秒前
科研通AI6应助小巧香萱采纳,获得10
1秒前
1秒前
2秒前
10完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
wlscj应助科研通管家采纳,获得20
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
5秒前
哈基米德应助科研通管家采纳,获得20
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
clark完成签到,获得积分10
5秒前
5秒前
5秒前
无花果应助羊觅夏采纳,获得10
5秒前
5秒前
bkagyin应助K. G.采纳,获得10
5秒前
子卿完成签到,获得积分10
6秒前
星星完成签到,获得积分10
6秒前
6秒前
MM完成签到,获得积分10
6秒前
zs发布了新的文献求助10
7秒前
Annnnnnn发布了新的文献求助10
7秒前
8秒前
整齐的傲之完成签到,获得积分10
8秒前
陈同学发布了新的文献求助10
9秒前
牙牙发布了新的文献求助10
10秒前
yuhui完成签到,获得积分10
10秒前
Guo完成签到 ,获得积分20
10秒前
隐形曼青应助小星星668采纳,获得10
10秒前
乐乐应助箫涵采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329293
求助须知:如何正确求助?哪些是违规求助? 4468822
关于积分的说明 13906962
捐赠科研通 4361865
什么是DOI,文献DOI怎么找? 2396049
邀请新用户注册赠送积分活动 1389427
关于科研通互助平台的介绍 1360272