Open-Pit Mine Area Mapping With Gaofen-2 Satellite Images Using U-Net+

残余物 计算机科学 网(多面体) 交叉口(航空) 卷积神经网络 数据挖掘 特征(语言学) 卫星 领域(数学) 人工智能 遥感 模式识别(心理学) 算法 地图学 数学 地理 语言学 哲学 几何学 航空航天工程 纯数学 工程类
作者
Tao Chen,Xiaoxiong Zheng,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3589-3599 被引量:22
标识
DOI:10.1109/jstars.2022.3171290
摘要

Obtaining information on the surface coverage of open-pit mining areas (OPMAs) is of great significance to ecological governance and restoration. The current methods to map the OPMAs face problems such as low mapping accuracy due to complex landscapes. In this article, we propose a hybrid open-pit mining mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial resolution satellite images (HSRSIs), using an improved U-Net neural network (U-Net+). By concatenating the previous layers with each subsequent layer to ensure that there is a maximum of feature maps of each layer in the network, the U-Net+ can reduce the loss of feature information and make the extraction capability of the network more powerful. Two independent OPMAs were selected as the study area for the OPMM. By taking advantage of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were mapped and each OPMS boundary was validated by field surveys. Then, these OPMSs were used as input to assess the accuracy of the OPMM results obtained by the U-Net+. By comparing our results with those provided by five state-of-the-art deep learning algorithms: Fully Convolutional Network (FCN), SegNet, U-Net, Residual U-Net (ResU-Net), and U-Net++, we conclude that the proposed framework outperformed these methods by more than 0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03% in Mean Intersection over union, 8.36% in producer accuracy and 4.44% in user accuracy. Therefore, the proposed framework thus exhibits very promising applicability in the ecological restoration and governance of OPMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt完成签到,获得积分10
1秒前
英俊的铭应助超级丝采纳,获得10
1秒前
2秒前
WLL发布了新的文献求助30
2秒前
浮游应助丰富的乌冬面采纳,获得10
2秒前
万能图书馆应助AA采纳,获得30
3秒前
CipherSage应助瞿霞采纳,获得10
4秒前
河西发布了新的文献求助20
4秒前
majf发布了新的文献求助10
5秒前
6秒前
7秒前
十七发布了新的文献求助10
7秒前
口腔牛马发布了新的文献求助10
7秒前
向日葵给向日葵的求助进行了留言
8秒前
白小超人完成签到 ,获得积分10
8秒前
9秒前
9秒前
乐乐应助寒江雪采纳,获得10
10秒前
11秒前
忧郁老头发布了新的文献求助10
11秒前
怕孤独的问芙完成签到,获得积分10
12秒前
13秒前
搜集达人应助wy采纳,获得20
13秒前
万能图书馆应助吕景宽采纳,获得10
13秒前
打打应助Deannn778采纳,获得10
13秒前
14秒前
14秒前
汉堡包应助红白刀向前冲采纳,获得10
15秒前
cbz发布了新的文献求助10
16秒前
迅捷海狸发布了新的文献求助10
16秒前
Thanere应助liberal采纳,获得20
17秒前
狂野乌冬面完成签到 ,获得积分10
17秒前
lst驳回了Owen应助
18秒前
十七完成签到,获得积分10
18秒前
拾三发布了新的文献求助10
18秒前
leena发布了新的文献求助10
18秒前
不配.应助yan1875采纳,获得200
19秒前
zkk发布了新的文献求助10
19秒前
忧郁老头完成签到,获得积分10
19秒前
苗条的十三完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460924
求助须知:如何正确求助?哪些是违规求助? 4565963
关于积分的说明 14302406
捐赠科研通 4491592
什么是DOI,文献DOI怎么找? 2460365
邀请新用户注册赠送积分活动 1449718
关于科研通互助平台的介绍 1425501