Game Theory for Distributed IoV Task Offloading With Fuzzy Neural Network in Edge Computing

计算机科学 服务器 边缘计算 云计算 任务(项目管理) 人工神经网络 GSM演进的增强数据速率 计算机网络 计算卸载 分布式计算 人工智能 操作系统 管理 经济
作者
Xiaolong Xu,Qinting Jiang,Peiming Zhang,Xuefei Cao,Mohammad R. Khosravi,Linss T. Alex,Lianyong Qi,Wanchun Dou
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4593-4604 被引量:108
标识
DOI:10.1109/tfuzz.2022.3158000
摘要

The development of the Internet of vehicles (IoV) has spawned a series of driving assistance services (e.g., collision warning), which improves the safety and intelligence of transportation. In IoV, the driving assistance services need to be met in time due to the rapid speed of vehicles. By introducing edge computing into the IoV, the insufficiency of local computation resources in vehicles is improved, providing high quality services for users. Nevertheless, the resources provided by edge servers are often limited, which fail to meet all the needs of users in IoV simultaneously. Thereby, how to minimize the tasks processing latency of users in the case of limited edge server resources is still a challenge. To handle the above problem, a task offloading scheme fuzzy-task-offloading-and-resource-allocation (F-TORA) based on Takagi–Sugeno fuzzy neural network (T–S FNN) and game theory is designed. Primarily, the cloud server predicts the future traffic flow of each section through T–S FNN and transmits the prediction results to the roadside units (RSUs). Then, the RSU adjusts the current load based on the captured future traffic flow data. After the load balancing of each RSU, the optimal task offloading strategy is determined for the users by game theory. Following, the edge server acts as an agent to allocate computing resources for the offloaded tasks by $Q$ -learning algorithm. Finally, the robust performance of the proposed method is validated by comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llqqq发布了新的文献求助10
1秒前
1秒前
宁羽发布了新的文献求助10
1秒前
科研通AI5应助饱满小兔子采纳,获得10
1秒前
www完成签到 ,获得积分10
1秒前
2秒前
2秒前
Childwise发布了新的文献求助10
2秒前
2秒前
3秒前
23132发布了新的文献求助10
3秒前
Jason应助研二发核心采纳,获得20
3秒前
3秒前
Lucas应助kagaminelen采纳,获得10
3秒前
小二郎应助頋菟采纳,获得10
3秒前
研友_VZG7GZ应助大白采纳,获得10
3秒前
ZZC完成签到,获得积分10
4秒前
SYLH应助kakainho采纳,获得10
4秒前
上官若男应助略晓薛采纳,获得10
4秒前
默默尔安发布了新的文献求助10
5秒前
大大小小发布了新的文献求助30
5秒前
5秒前
balabala发布了新的文献求助10
6秒前
6秒前
6秒前
aaaabc发布了新的文献求助10
7秒前
tesla发布了新的文献求助10
7秒前
bkagyin应助23132采纳,获得10
7秒前
糊涂的凡松完成签到,获得积分10
7秒前
bkagyin应助秀丽的初柔采纳,获得10
7秒前
8秒前
8秒前
rjbqs发布了新的文献求助10
8秒前
8秒前
pluto应助科研达人采纳,获得10
8秒前
流露发布了新的文献求助10
8秒前
研友_8DWD3Z完成签到,获得积分10
9秒前
风趣不正发布了新的文献求助20
9秒前
xiao完成签到 ,获得积分20
9秒前
NexusExplorer应助宁羽采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267