The KFIoU Loss for Rotated Object Detection

高斯分布 计算机科学 探测器 公制(单位) 超参数 点(几何) 旋转(数学) 可微函数 目标检测 对比度(视觉) 算法 人工智能 像素 期限(时间) 模式识别(心理学) 数学 物理 几何学 电信 运营管理 数学分析 经济 量子力学
作者
Xue Yang,Yue Zhou,Gefan Zhang,Jirui Yang,Wentao Wang,Junchi Yan,Xiaopeng Zhang,Qi Tian
出处
期刊:Cornell University - arXiv 被引量:66
标识
DOI:10.48550/arxiv.2201.12558
摘要

Differing from the well-developed horizontal object detection area whereby the computing-friendly IoU based loss is readily adopted and well fits with the detection metrics. In contrast, rotation detectors often involve a more complicated loss based on SkewIoU which is unfriendly to gradient-based training. In this paper, we propose an effective approximate SkewIoU loss based on Gaussian modeling and Gaussian product, which mainly consists of two items. The first term is a scale-insensitive center point loss, which is used to quickly narrow the distance between the center points of the two bounding boxes. In the distance-independent second term, the product of the Gaussian distributions is adopted to inherently mimic the mechanism of SkewIoU by its definition, and show its alignment with the SkewIoU loss at trend-level within a certain distance (i.e. within 9 pixels). This is in contrast to recent Gaussian modeling based rotation detectors e.g. GWD loss and KLD loss that involve a human-specified distribution distance metric which require additional hyperparameter tuning that vary across datasets and detectors. The resulting new loss called KFIoU loss is easier to implement and works better compared with exact SkewIoU loss, thanks to its full differentiability and ability to handle the non-overlapping cases. We further extend our technique to the 3-D case which also suffers from the same issues as 2-D. Extensive results on various public datasets (2-D/3-D, aerial/text/face images) with different base detectors show the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyb发布了新的文献求助10
刚刚
dew应助饿哭了塞采纳,获得10
刚刚
dew应助饿哭了塞采纳,获得10
刚刚
尊敬的柚子完成签到 ,获得积分10
1秒前
1秒前
dew应助饿哭了塞采纳,获得10
1秒前
chenxin完成签到,获得积分10
1秒前
dew应助饿哭了塞采纳,获得10
1秒前
弱水应助饿哭了塞采纳,获得10
1秒前
Derik发布了新的文献求助10
1秒前
弱水应助饿哭了塞采纳,获得10
1秒前
完美世界应助桃妹采纳,获得10
1秒前
dew应助饿哭了塞采纳,获得10
2秒前
dew应助饿哭了塞采纳,获得10
2秒前
changping应助大胆灵竹采纳,获得10
2秒前
从容的代真应助饿哭了塞采纳,获得10
2秒前
勤劳的炼金师完成签到,获得积分10
3秒前
李白完成签到,获得积分10
3秒前
梦想发布了新的文献求助50
3秒前
3秒前
冷空气发布了新的文献求助10
3秒前
4秒前
zzx完成签到 ,获得积分20
4秒前
爆米花应助星星的梦采纳,获得10
4秒前
李健的粉丝团团长应助yhh采纳,获得10
4秒前
任ren完成签到,获得积分20
5秒前
画风湖湘卷完成签到 ,获得积分10
6秒前
dd发布了新的文献求助10
6秒前
7秒前
7秒前
lyyyy发布了新的文献求助10
7秒前
浮游应助有魅力的寄琴采纳,获得10
7秒前
CASLSD完成签到 ,获得积分10
7秒前
Karlie完成签到,获得积分10
8秒前
天天快乐应助一区哥采纳,获得10
9秒前
搜集达人应助顾年采纳,获得10
9秒前
屈屈完成签到,获得积分10
10秒前
zyb完成签到,获得积分10
10秒前
XIAJIN完成签到,获得积分10
10秒前
领导范儿应助阳阳采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416