Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy

纳米磁铁 磁各向异性 趋磁细菌 磁力显微镜 材料科学 磁场 磁性纳米粒子 纳米技术 各向异性 磁畴 凝聚态物理 磁强计 消磁场 核磁共振 纳米结构
作者
Lourdes Marcano,Iñaki Orue,David Gandia,Lucía Gandarias,Markus Weigand,Radu Marius Abrudan,Ana García-Prieto,Alfredo García-Arribas,Alicia Muela,M. L. Fernández-Gubieda,Sergio Valencia
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.1c09559
摘要

Over the past few years, the use of nanomagnets in biomedical applications has increased. Among others, magnetic nanostructures can be used as diagnostic and therapeutic agents in cardiovascular diseases, to locally destroy cancer cells, to deliver drugs at specific positions, and to guide (and track) stem cells to damaged body locations in regenerative medicine and tissue engineering. All these applications rely on the magnetic properties of the nanomagnets which are mostly determined by their magnetic anisotropy. Despite its importance, the magnetic anisotropy of the individual magnetic nanostructures is unknown. Currently available magnetic sensitive microscopic methods are either limited in spatial resolution or in magnetic field strength or, more relevant, do not allow one to measure magnetic signals of nanomagnets embedded in biological systems. Hence, the use of nanomagnets in biomedical applications must rely on mean values obtained after averaging samples containing thousands of dissimilar entities. Here we present a hybrid experimental/theoretical method capable of working out the magnetic anisotropy constant and the magnetic easy axis of individual magnetic nanostructures embedded in biological systems. The method combines scanning transmission X-ray microscopy using an axi-asymmetric magnetic field with theoretical simulations based on the Stoner-Wohlfarth model. The validity of the method is demonstrated by determining the magnetic anisotropy constant and magnetic easy axis direction of 15 intracellular magnetite nanoparticles (50 nm in size) biosynthesized inside a magnetotactic bacterium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djxdjt发布了新的文献求助10
1秒前
蔺天宇完成签到,获得积分10
1秒前
一树完成签到,获得积分10
1秒前
3秒前
foregan完成签到,获得积分10
3秒前
kbkyvuy完成签到,获得积分10
4秒前
4秒前
Jasper应助huangtao采纳,获得10
4秒前
LL完成签到,获得积分10
4秒前
科研通AI6.1应助gilderf采纳,获得10
5秒前
6秒前
田様应助一树采纳,获得10
6秒前
秋慕蕊发布了新的文献求助10
6秒前
火星上书萱完成签到 ,获得积分10
7秒前
缥缈月光完成签到,获得积分10
7秒前
虚幻诗柳完成签到,获得积分10
7秒前
陶治完成签到,获得积分20
7秒前
zfl完成签到 ,获得积分10
8秒前
庾楼月宛如昨完成签到 ,获得积分10
8秒前
流沙无言完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
鸭嘴兽发布了新的文献求助10
10秒前
内向的凌旋完成签到,获得积分10
10秒前
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
恋如雪止应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
恋如雪止应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773975
求助须知:如何正确求助?哪些是违规求助? 5615282
关于积分的说明 15433908
捐赠科研通 4906488
什么是DOI,文献DOI怎么找? 2640250
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543074