Vision Transformer for Pansharpening

全色胶片 计算机科学 人工智能 多光谱图像 图像分辨率 变压器 编码器 卷积神经网络 计算机视觉 模式识别(心理学) 量子力学 操作系统 物理 电压
作者
Xiangchao Meng,Nan Wang,Feng Shao,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:73
标识
DOI:10.1109/tgrs.2022.3168465
摘要

Pansharpening is a fundamental and hot-spot research topic in remote sensing image fusion. In recent years, self-attention-based transformer has attracted considerable attention in natural language processing (NLP) and introduced to attend to computer vision (CV) tasks. Inspired by great success of the vision transformer (ViT) in image classification, we propose an improved and advanced purely transformer-based model for pansharpening. In the proposed method, stacked multispectral (MS) and panchromatic (PAN) images are cropped into patches (i.e., tokens), and after a three-layer self-attention-based encoder, these tokens contain rich information. After upsampled and stitched, a high spatial resolution (HR) MS image is finally obtained. Instead of convolutional neural networks (CNNs) pursuing a short-distance dependency, our proposed method aims to build up a long-distance dependency, to make full use of more useful features. The experiments were conducted on an opening benchmark dataset, including IKONOS with four-band MS/PAN images and WorldView-2 MS images featured by eight bands. In addition, the experiments were performed on reduced and full-resolution datasets from both qualitative and quantitative evaluation aspects. The experimental results indicate the competitive performance of the proposed model than other pansharpening methods, including the state-of-the-art pansharpening algorithms based on CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
感动城完成签到,获得积分10
刚刚
shimenwanzhao完成签到 ,获得积分0
刚刚
杨玄完成签到,获得积分10
刚刚
Tail发布了新的文献求助10
刚刚
丁真先生完成签到,获得积分10
1秒前
WL发布了新的文献求助10
1秒前
高贵火车完成签到,获得积分10
1秒前
坦率的匪完成签到,获得积分10
1秒前
jixiekaifa完成签到,获得积分10
1秒前
Silence完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
大个应助ENIX采纳,获得10
4秒前
ZHUTOU发布了新的文献求助10
4秒前
复杂的凝冬完成签到,获得积分10
4秒前
俊逸的尔柳完成签到,获得积分20
4秒前
化学小学生完成签到,获得积分10
4秒前
4秒前
5秒前
李爱国应助堀江真夏采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
简称王完成签到 ,获得积分10
6秒前
lalala发布了新的文献求助10
6秒前
小阿飞完成签到,获得积分10
6秒前
7秒前
尹吹斯汀发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
坦率斑马完成签到,获得积分10
8秒前
李大白完成签到 ,获得积分10
9秒前
zhuyan完成签到,获得积分10
10秒前
YJM应助zarahn采纳,获得10
10秒前
10秒前
歪歪象完成签到,获得积分10
10秒前
zrw完成签到,获得积分10
10秒前
HHHHH完成签到,获得积分10
10秒前
mygod完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539347
求助须知:如何正确求助?哪些是违规求助? 3116960
关于积分的说明 9328009
捐赠科研通 2814751
什么是DOI,文献DOI怎么找? 1547140
邀请新用户注册赠送积分活动 720813
科研通“疑难数据库(出版商)”最低求助积分说明 712247