Engagement in earnings conference calls

收益 业务 经济 会计 金融体系
作者
Kristina M. Rennekamp,Mani Sethuraman,Blake A. Steenhoven
出处
期刊:Journal of Accounting and Economics [Elsevier]
卷期号:74 (1): 101498-101498 被引量:19
标识
DOI:10.1016/j.jacceco.2022.101498
摘要

Research on conference calls documents that the question and answer (Q&A) portion is informative to markets. However, prior studies focus on the attributes of the participating individuals , primarily managers and analysts. We instead use the conversation as our unit of analysis, and examine whether conversational engagement between managers and analysts in earnings calls is informative to market participants. Using an experiment, we first demonstrate that linguistic style matching (LSM), a form of verbal coordination, is a reasonable empirical proxy for conversational engagement. We next use a quasi-experiment to confirm that investors can detect differences in engagement. Finally, using a hand-collected archival dataset comprised of audio recordings and textual transcripts from over 2400 earnings calls, we show that LSM in manager-analyst conversations during the Q&A is positively associated with absolute stock returns during the conversation, suggesting that conversations with greater engagement are more informative to capital markets and facilitate price formation. • Conversational engagement between managers and analysts during conference calls is informative to markets. • We introduce linguistic style matching (LSM), a form of verbal coordination between individuals, as a proxy for measuring conversational engagement in corporate settings. • We use experimental methods to validate the use of LSM as a proxy for engagement and demonstrate that investors can detect differences in engagement. • We use a novel hand-collected dataset of audio recordings and textual transcripts from conference calls to study engagement in real-world manager-analyst conversations. • OLS-based market microstructure analysis documents that conversational engagement between managers and analysts during earnings calls facilitates price formation in markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmslms发布了新的文献求助10
刚刚
XHL完成签到,获得积分10
2秒前
lg发布了新的文献求助10
2秒前
边城小子完成签到,获得积分10
3秒前
森巴小妹发布了新的文献求助10
4秒前
4秒前
Modest完成签到,获得积分10
4秒前
6秒前
10秒前
xiaofei666应助Vivian采纳,获得30
10秒前
11秒前
天天快乐应助橘子采纳,获得10
14秒前
15秒前
情怀应助芝士香猪采纳,获得10
15秒前
大个应助叫我小鲁就好采纳,获得10
16秒前
wuzhi完成签到,获得积分10
16秒前
超级七七发布了新的文献求助10
17秒前
负责半蕾完成签到,获得积分10
17秒前
无花果应助bofu采纳,获得10
21秒前
bierbia完成签到,获得积分10
22秒前
传奇3应助超级七七采纳,获得10
23秒前
科目三应助带带带笑川采纳,获得10
25秒前
26秒前
hdy331完成签到,获得积分10
27秒前
28秒前
深藏blue发布了新的文献求助10
30秒前
无花果应助bofu采纳,获得10
30秒前
Vanff完成签到,获得积分10
31秒前
31秒前
33秒前
科研民工完成签到,获得积分10
33秒前
芝士香猪发布了新的文献求助10
37秒前
liian7应助jianjiao采纳,获得20
38秒前
38秒前
wyr完成签到,获得积分10
39秒前
喻尔蓝完成签到 ,获得积分10
39秒前
传奇3应助如意的灰狼采纳,获得10
40秒前
41秒前
SciGPT应助bofu采纳,获得10
41秒前
灯没点完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086