Facile fabrication of amino-functionalized MIL-68(Al) metal–organic framework for effective adsorption of arsenate (As(V))

吸附 砷酸盐 吸热过程 可重用性 朗缪尔吸附模型 金属有机骨架 材料科学 热液循环 傅里叶变换红外光谱 核化学 化学 无机化学 化学工程 物理化学 有机化学 工程类 程序设计语言 计算机科学 软件
作者
Alireza Rahmani,Amir Shabanloo,Solmaz Zabihollahi,Mehdi Salari,Mostafa Leili,Mohammad Khazaei,Saber Alizadeh,Davood Nematollahi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:20
标识
DOI:10.1038/s41598-022-16038-0
摘要

Abstract An amino-functionalized MIL-68(Al) metal–organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R 2 > 0.99, F -value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m 2 /g) and high reusability for As(V)-contaminated water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLL完成签到,获得积分10
1秒前
chr完成签到,获得积分10
1秒前
斯文败类应助sadd采纳,获得10
1秒前
赵慧完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
nico发布了新的文献求助10
1秒前
懒羊羊关注了科研通微信公众号
2秒前
牛马人发布了新的文献求助10
3秒前
3秒前
Sherlock完成签到,获得积分10
3秒前
酷波er应助徐爱琳采纳,获得10
3秒前
3秒前
小北发布了新的文献求助10
4秒前
嘉嘉完成签到,获得积分10
4秒前
PANXX完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
羊羊发布了新的文献求助10
4秒前
大气月饼发布了新的文献求助10
5秒前
流星砸地鼠完成签到 ,获得积分10
6秒前
6秒前
茹茹发布了新的文献求助10
6秒前
Bear发布了新的文献求助10
7秒前
赵慧发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
小蘑菇应助Sandy采纳,获得10
8秒前
8秒前
9秒前
liao应助VDC采纳,获得10
9秒前
VISIN完成签到,获得积分10
9秒前
9秒前
10秒前
NexusExplorer应助colin采纳,获得10
10秒前
10秒前
Z_xy发布了新的文献求助10
10秒前
10秒前
TiY发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210