Deep Learning Based Compressive Sensing for UWB Signal Reconstruction

压缩传感 信号重构 计算机科学 稳健性(进化) 信号(编程语言) 重建算法 迭代重建 无线传感器网络 人工智能 算法 采样(信号处理) 信号处理 遥感 计算机视觉 电信 雷达 基因 滤波器(信号处理) 生物化学 地质学 化学 程序设计语言 计算机网络
作者
Zihan Luo,Jing Liang,Jie Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-10
标识
DOI:10.1109/tgrs.2022.3181891
摘要

Compressive sensing(CS) can greatly reduce the number of sampling points of signals, and therefore it is widely adopted in ultra-wideband(UWB) sensor systems. However, how to reconstruct the sensing signal from the compressed signal accurately is still an open problem because original signals do not always satisfy the sparse hypothesis that is required in CS. Typically, an appropriate CS reconstruction algorithm should be designed for a particular scenario, such as signal encoding, optical imaging and soil dynamic monitoring, etc. Unfortunately, soil data is susceptible to climatic factors, which leads to unsatisfactory performance of traditional reconstruction algorithms. To improve the accuracy of CS reconstruction for volatile signals as UWB soil echoes, we propose a novel deep learning based CS algorithm, named SFDLCS (select-first-decide-later compressive sensing) for UWB sensor signal reconstruction. In this algorithm, a search network is designed to perform the non-linear mapping from compressed residuals to non-zero elements in sensor signal, and a decision network is designed to characterize the distribution of UWB signals. These two networks form a ”select first, decide later” structure, which greatly improves the accuracy of signal reconstruction by utilizing the correlation of non-zero elements of the sensor signal. The effectiveness of this SFDLCS is demonstrated based on measured UWB soil data acquired by a P440 UWB sensor. Compared with traditional reconstruction algorithms, the proposed algorithm achieves both lower reconstruction error and stronger robustness in the noisy environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒小果发布了新的文献求助10
3秒前
Jc完成签到 ,获得积分10
4秒前
4秒前
6秒前
士多啤梨完成签到 ,获得积分10
7秒前
7秒前
小叮当完成签到 ,获得积分10
10秒前
慕青应助芒小果采纳,获得10
10秒前
情怀应助文静的如娆采纳,获得10
12秒前
练英雄发布了新的文献求助10
13秒前
生如夏花完成签到,获得积分10
13秒前
panda完成签到,获得积分10
14秒前
卜靖荷给卜靖荷的求助进行了留言
16秒前
斯文败类应助yagkinc采纳,获得10
24秒前
24秒前
饼饼发布了新的文献求助10
29秒前
dnbe完成签到,获得积分10
31秒前
深海鱼完成签到,获得积分10
35秒前
37秒前
星辰大海应助dnbe采纳,获得10
38秒前
38秒前
Jc发布了新的文献求助10
42秒前
45秒前
orixero应助:P采纳,获得10
45秒前
淡淡的白羊完成签到 ,获得积分10
46秒前
沉默寻凝发布了新的文献求助30
47秒前
qwh完成签到,获得积分20
47秒前
科目三应助准炮打不准采纳,获得10
48秒前
njsj关注了科研通微信公众号
49秒前
17381362015发布了新的文献求助10
50秒前
53秒前
55秒前
hui完成签到,获得积分20
56秒前
无花果应助科研通管家采纳,获得10
56秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
Hello应助科研通管家采纳,获得10
57秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450