Grouped Subspace Linear Semantic Alignment for Hyperspectral Image Transfer Learning

学习迁移 计算机科学 高光谱成像 人工智能 模式识别(心理学) 子空间拓扑 二元分类 成对比较 机器学习 支持向量机
作者
Shaoguang Zhou,Hao Wu,Zhaohui Xue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2022.3184691
摘要

Transfer learning (TL) offers an effective way to reduce the demand for labeled samples in remote sensing image classification. However, existing TL methods have some limitations. Simple linear TL methods cannot align the source and target domains well when the data shift is complicated, while nonlinear methods consist of many learnable parameters and often need many labeled samples. To overcome these issues, we design a novel grouped subspace linear semantic alignment (G-SLSA) algorithm, which consists of four main ingredients. First, inspired by the linear supervised transfer learning (LSTL) approach, we propose subspace linear semantic alignment (SLSA) aiming to reduce the demand for labeled samples. Second, considering the heterogeneity of class-level data shift, we extend SLSA to G-SLSA through a grouped alignment strategy, which can reduce the data shift by decomposing a multiclass transfer learning task into a set of binary subtasks. Third, considering the demand of subtasks fusion on posterior probabilities, we propose a robust posterior probability estimation method for the binary generalized learning vector quantization (GLVQ) that is used in G-SLSA. Finally, a pairwise coupling (PWC) method is applied to fuse the results of each subtask. Experimental results conducted on three popular hyperspectral datasets demonstrate that G-SLSA outperforms other traditional and state-of-the-art deep learning (DL) methods, with an OA of 80.78±4.28% for PC-UP transfer learning scenario when 5 samples per class are available in the target domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fcdawn完成签到,获得积分10
刚刚
刚刚
华仔应助glaciersu采纳,获得10
1秒前
1秒前
Wei发布了新的文献求助10
2秒前
HGC完成签到,获得积分10
2秒前
李健应助宁静致远采纳,获得10
2秒前
研友_VZG7GZ应助利威尔采纳,获得10
2秒前
传奇3应助moruifei采纳,获得10
2秒前
安详凡完成签到 ,获得积分10
2秒前
无花果应助俊杰采纳,获得10
3秒前
3秒前
传奇3应助lxy采纳,获得10
3秒前
3秒前
3秒前
林早上完成签到,获得积分10
3秒前
4秒前
cy完成签到,获得积分10
4秒前
4秒前
4秒前
今后应助ssssxr采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Maestro_S应助maggie采纳,获得10
5秒前
淡定宛白发布了新的文献求助30
5秒前
超级向薇发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
liyun发布了新的文献求助10
6秒前
烟花应助Meng采纳,获得10
6秒前
ding应助酷炫的白翠采纳,获得10
7秒前
陈博士完成签到,获得积分10
7秒前
小摩尔发布了新的文献求助10
7秒前
充电宝应助jimmy采纳,获得10
7秒前
yang发布了新的文献求助10
7秒前
Orange应助动听的柚子采纳,获得10
7秒前
7秒前
7秒前
zwy109完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723