亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Grouped Subspace Linear Semantic Alignment for Hyperspectral Image Transfer Learning

学习迁移 计算机科学 高光谱成像 人工智能 模式识别(心理学) 子空间拓扑 二元分类 成对比较 机器学习 支持向量机
作者
Shaoguang Zhou,Hao Wu,Zhaohui Xue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2022.3184691
摘要

Transfer learning (TL) offers an effective way to reduce the demand for labeled samples in remote sensing image classification. However, existing TL methods have some limitations. Simple linear TL methods cannot align the source and target domains well when the data shift is complicated, while nonlinear methods consist of many learnable parameters and often need many labeled samples. To overcome these issues, we design a novel grouped subspace linear semantic alignment (G-SLSA) algorithm, which consists of four main ingredients. First, inspired by the linear supervised transfer learning (LSTL) approach, we propose subspace linear semantic alignment (SLSA) aiming to reduce the demand for labeled samples. Second, considering the heterogeneity of class-level data shift, we extend SLSA to G-SLSA through a grouped alignment strategy, which can reduce the data shift by decomposing a multiclass transfer learning task into a set of binary subtasks. Third, considering the demand of subtasks fusion on posterior probabilities, we propose a robust posterior probability estimation method for the binary generalized learning vector quantization (GLVQ) that is used in G-SLSA. Finally, a pairwise coupling (PWC) method is applied to fuse the results of each subtask. Experimental results conducted on three popular hyperspectral datasets demonstrate that G-SLSA outperforms other traditional and state-of-the-art deep learning (DL) methods, with an OA of 80.78±4.28% for PC-UP transfer learning scenario when 5 samples per class are available in the target domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实白柏完成签到 ,获得积分10
3秒前
4秒前
明亮的老四完成签到 ,获得积分10
19秒前
19秒前
好人发布了新的文献求助30
26秒前
好人完成签到,获得积分10
39秒前
44秒前
可爱的函函应助Epiphany采纳,获得10
49秒前
50秒前
张璟博发布了新的文献求助10
50秒前
犬来八荒发布了新的文献求助20
57秒前
可爱的函函应助张璟博采纳,获得10
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
TXZ06发布了新的文献求助30
1分钟前
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
1分钟前
饼子完成签到 ,获得积分10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
2分钟前
2分钟前
TXZ06发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
4分钟前
4分钟前
4分钟前
Yuuuan完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
blenx完成签到,获得积分10
4分钟前
笑点低涵雁完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128