固定装置
机器人
反向动力学
计算机科学
任务(项目管理)
规划师
对偶(语法数字)
布线(电子设计自动化)
控制(管理)
对象(语法)
运动学
机器人运动学
人工智能
移动机器人
工程类
嵌入式系统
艺术
机械工程
物理
文学类
系统工程
经典力学
作者
Gabriel Arslan Waltersson,Rita Laezza,Yiannis Karayiannidis
标识
DOI:10.1109/icra46639.2022.9811765
摘要
In this paper, we propose a new framework for solving cable-routing problems with a dual-arm robot, where the objective is to clip a Deformable Linear Object (DLO) into several arbitrarily placed fixtures. The core of the framework is a task-space planner, which builds a roadmap from predefined tasks and employs a replanning strategy based on a genetic algorithm, if problems occur. The manipulation tasks are executed with either individual or coordinated control of the arms. Moreover, hierarchical quadratic programming is used to solve the inverse differential kinematics together with extra feasibility objectives. A vision system first identifies the desired fixture route and structure preserved registration estimates the state of the DLO in real-time. The framework is tested on real-world experiments with a YuMi robot, demonstrating a 90% success rate for 3 fixture problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI