The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:145
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助CA采纳,获得10
刚刚
不在忧伤发布了新的文献求助10
刚刚
小蘑菇应助hwezhu采纳,获得10
刚刚
蔺景轩发布了新的文献求助10
刚刚
jing发布了新的文献求助10
1秒前
1秒前
桐桐应助YwYzzZ采纳,获得10
1秒前
清爽觅双发布了新的文献求助10
1秒前
1秒前
雨无意发布了新的文献求助10
2秒前
兜兜完成签到,获得积分10
2秒前
yourenpkma123发布了新的文献求助10
2秒前
甜甜秋寒发布了新的文献求助10
2秒前
sqw完成签到,获得积分10
2秒前
3秒前
3秒前
Orange应助易酰水烊酸采纳,获得10
3秒前
4秒前
4秒前
超级翠应助xin采纳,获得10
4秒前
疯狂硕士完成签到,获得积分20
4秒前
5秒前
smile应助年华采纳,获得20
5秒前
5秒前
5秒前
5秒前
xue发布了新的文献求助10
6秒前
菜就多练完成签到,获得积分10
6秒前
6秒前
轨迹应助小熊采纳,获得30
6秒前
科研通AI6应助Jks采纳,获得10
6秒前
7秒前
LZ的脑子发布了新的文献求助10
7秒前
Aries完成签到,获得积分10
7秒前
Stella应助fnuew采纳,获得10
7秒前
向向发布了新的文献求助10
8秒前
桐桐应助wrk采纳,获得10
8秒前
闻言完成签到,获得积分10
8秒前
杰瑞院士完成签到,获得积分10
8秒前
hwezhu完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844