The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:118
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia发布了新的文献求助10
刚刚
SCI发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
马静雨完成签到,获得积分20
2秒前
3秒前
3秒前
快乐小白菜应助shenzhou9采纳,获得10
3秒前
无花果应助aertom采纳,获得10
3秒前
小田发布了新的文献求助10
3秒前
sankumao发布了新的文献求助30
3秒前
奋斗的盼柳完成签到 ,获得积分10
4秒前
5秒前
Jasper应助handsomecat采纳,获得10
5秒前
5秒前
李雪完成签到,获得积分10
6秒前
6秒前
sv发布了新的文献求助10
8秒前
小田完成签到,获得积分10
8秒前
茶茶完成签到,获得积分20
8秒前
苏兴龙完成签到,获得积分10
8秒前
坚强的亦云-333完成签到,获得积分10
8秒前
Ava应助dan1029采纳,获得10
9秒前
9秒前
9秒前
奶糖最可爱完成签到,获得积分10
10秒前
10秒前
mojomars发布了新的文献求助10
11秒前
幽壑之潜蛟应助茶茶采纳,获得10
11秒前
12秒前
12秒前
12秒前
迅速海云完成签到,获得积分10
12秒前
sjxx发布了新的文献求助10
12秒前
12秒前
乐乐应助Rachel采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794