The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:145
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yq完成签到 ,获得积分10
1秒前
NiKo发布了新的文献求助10
1秒前
abb发布了新的文献求助10
1秒前
1秒前
大个应助酷酷采纳,获得10
1秒前
2秒前
娜娜发布了新的文献求助10
2秒前
越瑟淳潔完成签到 ,获得积分10
2秒前
2秒前
漫漫发布了新的文献求助10
2秒前
善学以致用应助欧阳铭采纳,获得10
3秒前
Ryo发布了新的文献求助10
3秒前
3秒前
eagle14835完成签到,获得积分10
3秒前
共享精神应助cdbb采纳,获得10
3秒前
希望天下0贩的0应助如梦采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
栖迟完成签到 ,获得积分10
4秒前
虚心的若翠完成签到,获得积分10
4秒前
4秒前
Jared发布了新的文献求助10
4秒前
俊逸的无心完成签到,获得积分20
5秒前
Balance Man完成签到 ,获得积分10
5秒前
6秒前
Rrrr_完成签到,获得积分10
6秒前
星星又累发布了新的文献求助10
6秒前
大成完成签到,获得积分10
6秒前
懒羊羊发布了新的文献求助10
6秒前
小巧的牛排完成签到 ,获得积分10
7秒前
melo完成签到,获得积分10
7秒前
BowieHuang应助23采纳,获得10
7秒前
baolequ完成签到,获得积分10
8秒前
8秒前
阿刁发布了新的文献求助10
8秒前
南风完成签到 ,获得积分10
9秒前
Jasper应助xu采纳,获得10
9秒前
科研通AI6应助wendy采纳,获得10
10秒前
大脚仙完成签到,获得积分10
11秒前
XA发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210