The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:145
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助gwentea采纳,获得10
刚刚
李爱国应助自由的馒头采纳,获得10
刚刚
顾年完成签到,获得积分20
刚刚
loong发布了新的文献求助10
1秒前
1秒前
1秒前
高高烨磊完成签到,获得积分20
1秒前
冬日毛衣应助737采纳,获得10
1秒前
朴实曼岚完成签到,获得积分10
1秒前
1秒前
2秒前
user发布了新的文献求助10
3秒前
万能图书馆应助aaa采纳,获得10
3秒前
3秒前
风吹似夏完成签到,获得积分10
3秒前
hhh完成签到,获得积分20
4秒前
4秒前
高大的觅松完成签到,获得积分20
5秒前
5秒前
soso发布了新的文献求助10
5秒前
领导范儿应助ShuY采纳,获得10
5秒前
zzwwill完成签到,获得积分10
6秒前
6秒前
小二郎应助南松采纳,获得10
6秒前
6秒前
munire发布了新的文献求助10
6秒前
6秒前
Orange应助loong采纳,获得10
6秒前
青黄发布了新的文献求助10
6秒前
张和云完成签到,获得积分10
7秒前
lihua完成签到,获得积分10
9秒前
羊羊羊发布了新的文献求助30
9秒前
10秒前
10秒前
zhui发布了新的文献求助10
10秒前
没有梦想发布了新的文献求助10
10秒前
Yonina发布了新的文献求助10
11秒前
11秒前
tt完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403