已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:145
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Colo完成签到,获得积分10
刚刚
qsq完成签到 ,获得积分10
2秒前
2秒前
3秒前
6秒前
天天快乐应助浮光采纳,获得10
6秒前
ding应助panyi采纳,获得10
7秒前
9秒前
10秒前
joan完成签到,获得积分10
11秒前
11秒前
传奇3应助Tracy采纳,获得10
12秒前
薛变霞发布了新的文献求助10
12秒前
幸运幸福完成签到,获得积分10
13秒前
yuanyuan发布了新的文献求助10
13秒前
优雅完成签到,获得积分10
14秒前
斯文怀寒完成签到 ,获得积分20
14秒前
14秒前
善学以致用应助想想采纳,获得10
15秒前
端庄的飞阳完成签到 ,获得积分10
15秒前
orixero应助健忘海露采纳,获得10
16秒前
清风如月发布了新的文献求助10
16秒前
qiandi完成签到 ,获得积分10
17秒前
19秒前
无限白羊发布了新的文献求助10
20秒前
21秒前
yuanyuan完成签到,获得积分10
22秒前
24秒前
大模型应助复方蛋酥卷采纳,获得20
25秒前
25秒前
26秒前
英姑应助留胡子的大树采纳,获得10
27秒前
十六夜彦完成签到,获得积分10
27秒前
浮光发布了新的文献求助10
28秒前
菠萝完成签到 ,获得积分0
29秒前
30秒前
32秒前
LA发布了新的文献求助20
34秒前
香蕉觅云应助李国铭采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263