The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:134
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baobaonaixi完成签到,获得积分10
1秒前
昵称完成签到,获得积分10
1秒前
泶1完成签到,获得积分10
2秒前
3秒前
zhusy347发布了新的文献求助10
3秒前
小马甲应助陈少华采纳,获得10
3秒前
jimmy完成签到,获得积分10
5秒前
大模型应助阿巴阿巴采纳,获得10
5秒前
木偶完成签到 ,获得积分10
5秒前
丁温暖完成签到 ,获得积分10
5秒前
111完成签到,获得积分10
5秒前
爆米花应助Chuncheng采纳,获得10
6秒前
PJ完成签到,获得积分10
6秒前
6秒前
JamesPei应助崔昕雨采纳,获得10
6秒前
PDD完成签到,获得积分10
6秒前
7秒前
CodeCraft应助张世玉采纳,获得10
7秒前
慕青应助友好的难敌采纳,获得10
8秒前
hakuna_matata完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助左左采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
炎帝完成签到 ,获得积分10
10秒前
轩辕寄风完成签到,获得积分10
11秒前
11秒前
明亮之柔完成签到 ,获得积分10
12秒前
左一酱完成签到 ,获得积分10
12秒前
小背包完成签到 ,获得积分10
12秒前
12秒前
苽峰完成签到,获得积分10
13秒前
PDD发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
慕青应助沈嘀嘀采纳,获得10
14秒前
折小媛发布了新的文献求助10
14秒前
炸茄盒的老头完成签到,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478