The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model

方位(导航) 计算机科学 融合 断层(地质) 深度学习 涡轮机 模式识别(心理学) 人工智能 信号(编程语言) 机器学习 生成语法 工程类 航空航天工程 哲学 地震学 地质学 程序设计语言 语言学
作者
Liang Zhang,Hao Zhang,Guowei Cai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:145
标识
DOI:10.1109/tim.2022.3178483
摘要

Low fault diagnosis accuracy in case of the insufficient and imbalanced samples is a major problem in the wind turbine fault diagnosis. The imbalance of samples refers to the large difference in the number of samples of different categories, or the lack of a certain fault sample, which requires good learning of the characteristics of a small number of samples. Sample generation in the deep learning generation model can effectively solve this problem. In this study, we proposed a novel multi-class wind turbine bearing fault diagnosis strategy based on the conditional variational generative adversarial network (CVAE-GAN) model combining multi-source signals fusion. This strategy converts multi-source one-dimensional vibration signals into two-dimensional signals, and the multi-source two-dimensional signals were fused by using wavelet transform. The CVAE-GAN model was developed by merging the variational auto-encoder (VAE) with the generative adversarial network (GAN). The VAE encoder was introduced as the front end of the GAN generator. The sample label was introduced as the model input to improve the model's training efficiency. Finally, the sample set was used to train encoder, generator and discriminator in the CVAE-GAN model to supplement the number of the fault samples. In the classifier, the sample set is used to do experimental analysis under various sample circumstances. The results show that the proposed strategy can increase wind turbine bearing fault diagnostic accuracy in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZL发布了新的文献求助10
刚刚
liurencun发布了新的文献求助10
刚刚
刚刚
刚刚
electromx发布了新的文献求助20
1秒前
高贵焦发布了新的文献求助10
1秒前
充电宝应助SYS采纳,获得10
1秒前
昼夜本色发布了新的文献求助10
1秒前
目光之澄发布了新的文献求助10
1秒前
1秒前
xiliii发布了新的文献求助10
1秒前
2秒前
yang666完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助maybe豪采纳,获得10
3秒前
华仔应助风清扬采纳,获得10
3秒前
as完成签到,获得积分10
3秒前
打打应助kaiqiang采纳,获得10
4秒前
黄诺雪发布了新的文献求助10
4秒前
4秒前
lvlv发布了新的文献求助10
4秒前
4秒前
moxin发布了新的文献求助10
4秒前
4秒前
善学以致用应助Cheney采纳,获得10
5秒前
希望天下0贩的0应助陈彪采纳,获得10
5秒前
5秒前
5秒前
biubiu完成签到,获得积分10
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
wu完成签到 ,获得积分10
7秒前
整齐碧玉发布了新的文献求助10
7秒前
hia发布了新的文献求助20
7秒前
Orange应助呼吸自然采纳,获得10
7秒前
7秒前
在水一方应助下次一定采纳,获得10
7秒前
寻道图强应助宁阿霜采纳,获得50
7秒前
ZL完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807