可见的
强化学习
部分可观测马尔可夫决策过程
子空间拓扑
马尔可夫决策过程
计算机科学
流量(数学)
状态空间
弹道
空格(标点符号)
过程(计算)
财产(哲学)
马尔可夫过程
数学优化
控制(管理)
控制理论(社会学)
算法
数学
人工智能
物理
几何学
操作系统
天文
哲学
认识论
统计
量子力学
作者
Akira Kubo,Masaki Shimizu
出处
期刊:Physical review
日期:2022-06-01
卷期号:105 (6)
被引量:2
标识
DOI:10.1103/physreve.105.065101
摘要
Even if the trajectory in a viscous flow system stays within a low dimensional subspace in the state space, reinforcement learning (RL) requires many observables in the active control problem. This is because the observables are assumed to follow a policy-independent Markov decision process in the usual RL framework and full observation of the system is required to satisfy this assumption. Although RL with a partially observable condition is generally a difficult task, we construct a consistent algorithm with the condition using the low dimensional property of viscous flow. Using typical examples of active flow control, we show that our algorithm is more stable and efficient than the existing RL algorithms, even under a small number of observables.
科研通智能强力驱动
Strongly Powered by AbleSci AI