亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretability-Guided Inductive Bias For Deep Learning Based Medical Image

可解释性 计算机科学 人工智能 深度学习 机器学习 模块化设计 稳健性(进化) 一致性(知识库) 归纳偏置 分割 模式识别(心理学) 多任务学习 生物化学 经济 化学 管理 操作系统 基因 任务(项目管理)
作者
Dwarikanath Mahapatra,Alexander Poellinger,Mauricio Reyes
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102551-102551 被引量:28
标识
DOI:10.1016/j.media.2022.102551
摘要

Deep learning methods provide state of the art performance for supervised learning based medical image analysis. However it is essential that trained models extract clinically relevant features for downstream tasks as, otherwise, shortcut learning and generalization issues can occur. Furthermore in the medical field, trustability and transparency of current deep learning systems is a much desired property. In this paper we propose an interpretability-guided inductive bias approach enforcing that learned features yield more distinctive and spatially consistent saliency maps for different class labels of trained models, leading to improved model performance. We achieve our objectives by incorporating a class-distinctiveness loss and a spatial-consistency regularization loss term. Experimental results for medical image classification and segmentation tasks show our proposed approach outperforms conventional methods, while yielding saliency maps in higher agreement with clinical experts. Additionally, we show how information from unlabeled images can be used to further boost performance. In summary, the proposed approach is modular, applicable to existing network architectures used for medical imaging applications, and yields improved learning rates, model robustness, and model interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮完成签到 ,获得积分10
1秒前
SimonShaw完成签到 ,获得积分10
2秒前
9秒前
kk_1315完成签到,获得积分0
14秒前
敬业乐群完成签到,获得积分10
16秒前
28秒前
学术小菜鸟完成签到 ,获得积分10
32秒前
Guts发布了新的文献求助10
32秒前
木有完成签到 ,获得积分10
42秒前
Bin_Liu完成签到,获得积分20
42秒前
42秒前
44秒前
画星星发布了新的文献求助10
44秒前
amengptsd完成签到,获得积分10
44秒前
crx发布了新的文献求助10
47秒前
50秒前
大模型应助crx采纳,获得10
51秒前
54秒前
1分钟前
echo发布了新的文献求助10
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
小昭发布了新的文献求助10
1分钟前
1分钟前
打工人发布了新的文献求助10
1分钟前
顺利的边牧完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
abc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
某某完成签到 ,获得积分10
1分钟前
慕青应助yue采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754768
求助须知:如何正确求助?哪些是违规求助? 5489338
关于积分的说明 15380586
捐赠科研通 4893238
什么是DOI,文献DOI怎么找? 2631830
邀请新用户注册赠送积分活动 1579747
关于科研通互助平台的介绍 1535552