Joint segmentation of retinal layers and macular edema in optical coherence tomography scans based on RLMENet

光学相干层析成像 分割 计算机科学 人工智能 视网膜 试验装置 模式识别(心理学) 计算机视觉 视网膜 特征(语言学) 图像分割 糖尿病性视网膜病变 眼科 医学 光学 物理 内分泌学 哲学 糖尿病 语言学
作者
Jun Wu,Shuang Liu,Zhitao Xiao,Fang Zhang,Lei Geng
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7150-7166 被引量:1
标识
DOI:10.1002/mp.15866
摘要

Abstract Purpose The segmentation of retinal layers and fluid lesions on retinal optical coherence tomography (OCT) images is an important component of screening and diagnosing retinopathy in clinical ophthalmic treatment. We designed a novel network for accurate segmentation of the seven tissue layers of the retina and lesion areas of diabetic macular edema (DME), which can assist doctors to quantitatively analyze the disease. Methods In this article, we propose the Retinal Layer Macular Edema Network (RLMENet) model to achieve end‐to‐end joint segmentation of retinal layers and fluids. The network employs dense multi‐scale attention to enhance the extraction of retinal layer and fluid detail information and achieve efficient long‐range modeling, which improves the receptive field and obtains multi‐scale features. As the more complex decoder part is designed, which integrates more low‐level feature information on the decoder side, more features are extracted to gradually restore the resolution of the feature map and improve the segmentation accuracy. Results We used part of the OCT2017 dataset to train and verify the model to divide the data into a training set, validation set, and test set and set it to a 7:2:1 ratio. We evaluated our method on the ISIC2017 dataset. Experimental results showed that the RLMENet model designed in this work can accurately segment seven retinal tissue layers and DME lesions on the retinal OCT dataset. Finally, the MIoU value in the test set reached 86.55%. The model can be extended to other medical image segmentation datasets to achieve better segmentation performance. Conclusions The proposed method was superior to the existing segmentation methods, achieved a more refined segmentation effect, and provided an auxiliary analysis tool for clinical diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助XD采纳,获得10
刚刚
科研通AI2S应助斯文的傲珊采纳,获得10
1秒前
敬老院N号应助Shirley采纳,获得30
1秒前
萌兰完成签到,获得积分10
1秒前
1秒前
carbonhan发布了新的文献求助10
2秒前
leyellows完成签到 ,获得积分10
2秒前
3秒前
Pinkney完成签到,获得积分10
3秒前
5秒前
畅快访蕊完成签到,获得积分10
5秒前
小明月发布了新的文献求助10
6秒前
6秒前
7秒前
Wententh完成签到,获得积分10
8秒前
我是老大应助caleb采纳,获得10
8秒前
ananan完成签到,获得积分10
8秒前
张张发布了新的文献求助10
8秒前
qiuling完成签到,获得积分10
9秒前
liuHX完成签到,获得积分10
9秒前
洁净百川完成签到 ,获得积分10
9秒前
白杨发布了新的文献求助10
10秒前
李健的小迷弟应助youngx采纳,获得10
11秒前
11秒前
Avicii完成签到 ,获得积分10
12秒前
颇黎发布了新的文献求助10
12秒前
KXX完成签到,获得积分10
12秒前
Augusterny完成签到 ,获得积分10
12秒前
邓邓完成签到,获得积分10
13秒前
完美世界应助ming采纳,获得10
13秒前
13秒前
StevenXiong发布了新的文献求助10
14秒前
敏感元正完成签到,获得积分10
14秒前
14秒前
15秒前
orixero应助WJ采纳,获得30
15秒前
15秒前
15秒前
棕泡泡鸡完成签到,获得积分10
15秒前
CipherSage应助sx采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587