Ensemble learning using three-way density-sensitive spectral clustering

聚类分析 相关聚类 CURE数据聚类算法 单连锁聚类 集成学习 模糊聚类 光谱聚类 k-中位数聚类 数据流聚类 树冠聚类算法 模式识别(心理学) 完整的链接聚类 确定数据集中的群集数 火焰团簇 计算机科学 数学 高维数据聚类 数据挖掘 人工智能 算法
作者
Jiachen Fan,Pingxin Wang,Chunmao Jiang,Xibei Yang,Zhen Jin
出处
期刊:International Journal of Approximate Reasoning [Elsevier]
卷期号:149: 70-84 被引量:14
标识
DOI:10.1016/j.ijar.2022.07.003
摘要

As one popular clustering algorithm in the last few years, spectral clustering is advantageous over most existing clustering algorithms. Although spectral clustering can perform well in many instances, the algorithm still has some problems. The clusters obtained by spectral clustering have crisp boundaries, which cannot reflect the fact that one cluster may not have a well-defined boundary in the real situations. Furthermore, the frequently-used distance measures in spectral clustering cannot satisfy both global and local consistency, especially for the data with multi-scale. In order to address the above limitations, we firstly present a three-way density-sensitive spectral clustering algorithm, which uses the core region and the fringe region to represent a cluster. In the proposed algorithm, we use density-sensitive distance to produce a similarity matrix, which can well capture the real data structures. An overlap clustering is introduced to obtain the upper bound (unions of the core regions and the fringe regions) of each cluster and perturbation analysis is applied to separate the core regions from the upper bounds. The fringe region of the specific cluster is the differences between the upper bound and the core region. Because a single clustering algorithm cannot always achieve a good clustering result, we develop an improved ensemble three-way spectral clustering algorithm based on ensemble strategy. The proposed ensemble algorithm randomly extracts feature subset of sample and uses the three-way density-sensitive clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, voting method is used to generate a three-way clustering result. The experimental results show that the three-way density-sensitive clustering algorithm can well explain the data structure and maintain a good clustering performance at the same time, and the ensemble three-way density-sensitive spectral clustering can improve the robustness and stability of clustering results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀语梦完成签到,获得积分10
刚刚
zyp1229完成签到,获得积分10
刚刚
Liu发布了新的文献求助10
1秒前
1秒前
1秒前
无花果应助struggling2026采纳,获得10
2秒前
2秒前
耕牛热发布了新的文献求助10
2秒前
2秒前
背后白梦发布了新的文献求助80
2秒前
鱼刺鱼刺卡完成签到,获得积分10
2秒前
星星完成签到,获得积分10
2秒前
chenshi0515完成签到 ,获得积分10
3秒前
3秒前
田攀发布了新的文献求助10
4秒前
4秒前
coolman冰人完成签到,获得积分20
4秒前
4秒前
华仔应助徐志豪采纳,获得10
5秒前
什么也难不倒我完成签到 ,获得积分10
5秒前
千里发布了新的文献求助10
5秒前
俊、、完成签到,获得积分10
6秒前
7秒前
7秒前
清秀语梦发布了新的文献求助10
7秒前
传奇3应助冲冲冲采纳,获得10
8秒前
9秒前
iNk应助QQiang6采纳,获得10
9秒前
耍酷皮皮虾完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
yzizz发布了新的文献求助10
10秒前
Hello应助yulj采纳,获得10
10秒前
今后应助RY文献下载采纳,获得10
11秒前
海水与风车完成签到,获得积分10
11秒前
ww发布了新的文献求助10
11秒前
fmy完成签到,获得积分10
11秒前
12秒前
顺心以柳完成签到 ,获得积分20
12秒前
潇潇雨歇完成签到,获得积分10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285