Ensemble learning using three-way density-sensitive spectral clustering

聚类分析 相关聚类 CURE数据聚类算法 单连锁聚类 集成学习 模糊聚类 光谱聚类 k-中位数聚类 数据流聚类 树冠聚类算法 模式识别(心理学) 完整的链接聚类 确定数据集中的群集数 火焰团簇 计算机科学 数学 高维数据聚类 数据挖掘 人工智能 算法
作者
Jiachen Fan,Pingxin Wang,Chunmao Jiang,Xibei Yang,Zhen Jin
出处
期刊:International Journal of Approximate Reasoning [Elsevier BV]
卷期号:149: 70-84 被引量:14
标识
DOI:10.1016/j.ijar.2022.07.003
摘要

As one popular clustering algorithm in the last few years, spectral clustering is advantageous over most existing clustering algorithms. Although spectral clustering can perform well in many instances, the algorithm still has some problems. The clusters obtained by spectral clustering have crisp boundaries, which cannot reflect the fact that one cluster may not have a well-defined boundary in the real situations. Furthermore, the frequently-used distance measures in spectral clustering cannot satisfy both global and local consistency, especially for the data with multi-scale. In order to address the above limitations, we firstly present a three-way density-sensitive spectral clustering algorithm, which uses the core region and the fringe region to represent a cluster. In the proposed algorithm, we use density-sensitive distance to produce a similarity matrix, which can well capture the real data structures. An overlap clustering is introduced to obtain the upper bound (unions of the core regions and the fringe regions) of each cluster and perturbation analysis is applied to separate the core regions from the upper bounds. The fringe region of the specific cluster is the differences between the upper bound and the core region. Because a single clustering algorithm cannot always achieve a good clustering result, we develop an improved ensemble three-way spectral clustering algorithm based on ensemble strategy. The proposed ensemble algorithm randomly extracts feature subset of sample and uses the three-way density-sensitive clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, voting method is used to generate a three-way clustering result. The experimental results show that the three-way density-sensitive clustering algorithm can well explain the data structure and maintain a good clustering performance at the same time, and the ensemble three-way density-sensitive spectral clustering can improve the robustness and stability of clustering results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
Lucky完成签到,获得积分10
1秒前
小马甲应助liwenjie采纳,获得10
2秒前
科目三应助zeta采纳,获得10
2秒前
Lv完成签到,获得积分10
4秒前
4秒前
sherrinford完成签到,获得积分10
4秒前
Hello应助katsuras采纳,获得10
5秒前
大个应助没有昵称采纳,获得10
6秒前
琪音_xy发布了新的文献求助10
6秒前
6秒前
weiwei发布了新的文献求助20
6秒前
王若琪完成签到 ,获得积分10
7秒前
7秒前
8秒前
HLQF完成签到,获得积分10
9秒前
9秒前
seaYU关注了科研通微信公众号
9秒前
felix发布了新的文献求助10
9秒前
T拐拐发布了新的文献求助10
11秒前
立婉陶应助如意的灰狼采纳,获得10
11秒前
在水一方应助如意的灰狼采纳,获得10
11秒前
11秒前
wanci应助讨厌胡萝卜采纳,获得10
11秒前
12秒前
12秒前
刘文宇发布了新的文献求助50
13秒前
14秒前
14秒前
clione完成签到,获得积分10
14秒前
香蕉觅云应助xiaofenzi采纳,获得10
15秒前
liwenjie发布了新的文献求助10
17秒前
bpg28完成签到,获得积分20
17秒前
17秒前
等风的人发布了新的文献求助10
18秒前
18秒前
18秒前
今后应助DreamMaker采纳,获得10
18秒前
Jasper应助haoyooo采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526