Ensemble learning using three-way density-sensitive spectral clustering

聚类分析 相关聚类 CURE数据聚类算法 单连锁聚类 集成学习 模糊聚类 光谱聚类 k-中位数聚类 数据流聚类 树冠聚类算法 模式识别(心理学) 完整的链接聚类 确定数据集中的群集数 火焰团簇 计算机科学 数学 高维数据聚类 数据挖掘 人工智能 算法
作者
Jiachen Fan,Pingxin Wang,Chunmao Jiang,Xibei Yang,Zhen Jin
出处
期刊:International Journal of Approximate Reasoning [Elsevier]
卷期号:149: 70-84 被引量:14
标识
DOI:10.1016/j.ijar.2022.07.003
摘要

As one popular clustering algorithm in the last few years, spectral clustering is advantageous over most existing clustering algorithms. Although spectral clustering can perform well in many instances, the algorithm still has some problems. The clusters obtained by spectral clustering have crisp boundaries, which cannot reflect the fact that one cluster may not have a well-defined boundary in the real situations. Furthermore, the frequently-used distance measures in spectral clustering cannot satisfy both global and local consistency, especially for the data with multi-scale. In order to address the above limitations, we firstly present a three-way density-sensitive spectral clustering algorithm, which uses the core region and the fringe region to represent a cluster. In the proposed algorithm, we use density-sensitive distance to produce a similarity matrix, which can well capture the real data structures. An overlap clustering is introduced to obtain the upper bound (unions of the core regions and the fringe regions) of each cluster and perturbation analysis is applied to separate the core regions from the upper bounds. The fringe region of the specific cluster is the differences between the upper bound and the core region. Because a single clustering algorithm cannot always achieve a good clustering result, we develop an improved ensemble three-way spectral clustering algorithm based on ensemble strategy. The proposed ensemble algorithm randomly extracts feature subset of sample and uses the three-way density-sensitive clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, voting method is used to generate a three-way clustering result. The experimental results show that the three-way density-sensitive clustering algorithm can well explain the data structure and maintain a good clustering performance at the same time, and the ensemble three-way density-sensitive spectral clustering can improve the robustness and stability of clustering results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小先生发布了新的文献求助10
3秒前
hzy完成签到,获得积分10
4秒前
4秒前
6秒前
如是空者发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
高源伯完成签到 ,获得积分10
9秒前
科目三应助东方采纳,获得10
9秒前
10秒前
2534165发布了新的文献求助30
14秒前
14秒前
高兴的万宝路完成签到,获得积分10
15秒前
共享精神应助耍酷芙蓉采纳,获得10
15秒前
研友_8D30kZ完成签到,获得积分10
17秒前
blueweier完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得30
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
19秒前
阿会完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
乐意发布了新的文献求助10
21秒前
傻傻的宛白完成签到,获得积分10
22秒前
yiga发布了新的文献求助30
22秒前
23秒前
23秒前
Hanayu完成签到 ,获得积分10
25秒前
26秒前
领导范儿应助美满的砖头采纳,获得10
26秒前
27秒前
刘潼潼发布了新的文献求助10
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171135
求助须知:如何正确求助?哪些是违规求助? 2822063
关于积分的说明 7937837
捐赠科研通 2482500
什么是DOI,文献DOI怎么找? 1322565
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627