Ensemble learning using three-way density-sensitive spectral clustering

聚类分析 相关聚类 CURE数据聚类算法 单连锁聚类 集成学习 模糊聚类 光谱聚类 k-中位数聚类 数据流聚类 树冠聚类算法 模式识别(心理学) 完整的链接聚类 确定数据集中的群集数 火焰团簇 计算机科学 数学 高维数据聚类 数据挖掘 人工智能 算法
作者
Jiachen Fan,Pingxin Wang,Chunmao Jiang,Xibei Yang,Zhen Jin
出处
期刊:International Journal of Approximate Reasoning [Elsevier BV]
卷期号:149: 70-84 被引量:14
标识
DOI:10.1016/j.ijar.2022.07.003
摘要

As one popular clustering algorithm in the last few years, spectral clustering is advantageous over most existing clustering algorithms. Although spectral clustering can perform well in many instances, the algorithm still has some problems. The clusters obtained by spectral clustering have crisp boundaries, which cannot reflect the fact that one cluster may not have a well-defined boundary in the real situations. Furthermore, the frequently-used distance measures in spectral clustering cannot satisfy both global and local consistency, especially for the data with multi-scale. In order to address the above limitations, we firstly present a three-way density-sensitive spectral clustering algorithm, which uses the core region and the fringe region to represent a cluster. In the proposed algorithm, we use density-sensitive distance to produce a similarity matrix, which can well capture the real data structures. An overlap clustering is introduced to obtain the upper bound (unions of the core regions and the fringe regions) of each cluster and perturbation analysis is applied to separate the core regions from the upper bounds. The fringe region of the specific cluster is the differences between the upper bound and the core region. Because a single clustering algorithm cannot always achieve a good clustering result, we develop an improved ensemble three-way spectral clustering algorithm based on ensemble strategy. The proposed ensemble algorithm randomly extracts feature subset of sample and uses the three-way density-sensitive clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, voting method is used to generate a three-way clustering result. The experimental results show that the three-way density-sensitive clustering algorithm can well explain the data structure and maintain a good clustering performance at the same time, and the ensemble three-way density-sensitive spectral clustering can improve the robustness and stability of clustering results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABC完成签到,获得积分20
1秒前
原本发布了新的文献求助10
1秒前
dzy完成签到,获得积分20
2秒前
amber完成签到 ,获得积分10
2秒前
Green完成签到,获得积分10
4秒前
5秒前
小木子完成签到,获得积分10
7秒前
舟遥遥完成签到,获得积分10
8秒前
华仔应助大橙子采纳,获得10
10秒前
桐桐应助Bismarck采纳,获得10
14秒前
CLY完成签到,获得积分10
15秒前
16秒前
rita_sun1969完成签到,获得积分10
17秒前
研友_8K2QJZ完成签到,获得积分10
17秒前
蝴蝶完成签到 ,获得积分10
18秒前
ARIA完成签到 ,获得积分10
18秒前
大橙子发布了新的文献求助10
21秒前
Bismarck完成签到,获得积分20
22秒前
22秒前
爱笑子默完成签到,获得积分10
23秒前
23秒前
一点完成签到,获得积分10
25秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
25秒前
DezhaoWang完成签到,获得积分10
26秒前
知犯何逆发布了新的文献求助10
27秒前
原本完成签到,获得积分10
27秒前
Bismarck发布了新的文献求助10
28秒前
苗条丹南完成签到 ,获得积分10
30秒前
yu完成签到 ,获得积分10
33秒前
skyleon完成签到,获得积分10
33秒前
无心的天真完成签到 ,获得积分10
34秒前
Engen完成签到,获得积分20
34秒前
35秒前
学术小垃圾完成签到,获得积分10
35秒前
dreamwalk完成签到 ,获得积分10
35秒前
黄淮科研小白龙完成签到 ,获得积分10
36秒前
齐嫒琳完成签到,获得积分10
38秒前
研友_Lav0Qn完成签到,获得积分10
38秒前
大橙子发布了新的文献求助10
39秒前
GreenT完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022