已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ensemble learning using three-way density-sensitive spectral clustering

聚类分析 相关聚类 CURE数据聚类算法 单连锁聚类 集成学习 模糊聚类 光谱聚类 k-中位数聚类 数据流聚类 树冠聚类算法 模式识别(心理学) 完整的链接聚类 确定数据集中的群集数 火焰团簇 计算机科学 数学 高维数据聚类 数据挖掘 人工智能 算法
作者
Jiachen Fan,Pingxin Wang,Chunmao Jiang,Xibei Yang,Zhen Jin
出处
期刊:International Journal of Approximate Reasoning [Elsevier BV]
卷期号:149: 70-84 被引量:14
标识
DOI:10.1016/j.ijar.2022.07.003
摘要

As one popular clustering algorithm in the last few years, spectral clustering is advantageous over most existing clustering algorithms. Although spectral clustering can perform well in many instances, the algorithm still has some problems. The clusters obtained by spectral clustering have crisp boundaries, which cannot reflect the fact that one cluster may not have a well-defined boundary in the real situations. Furthermore, the frequently-used distance measures in spectral clustering cannot satisfy both global and local consistency, especially for the data with multi-scale. In order to address the above limitations, we firstly present a three-way density-sensitive spectral clustering algorithm, which uses the core region and the fringe region to represent a cluster. In the proposed algorithm, we use density-sensitive distance to produce a similarity matrix, which can well capture the real data structures. An overlap clustering is introduced to obtain the upper bound (unions of the core regions and the fringe regions) of each cluster and perturbation analysis is applied to separate the core regions from the upper bounds. The fringe region of the specific cluster is the differences between the upper bound and the core region. Because a single clustering algorithm cannot always achieve a good clustering result, we develop an improved ensemble three-way spectral clustering algorithm based on ensemble strategy. The proposed ensemble algorithm randomly extracts feature subset of sample and uses the three-way density-sensitive clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, voting method is used to generate a three-way clustering result. The experimental results show that the three-way density-sensitive clustering algorithm can well explain the data structure and maintain a good clustering performance at the same time, and the ensemble three-way density-sensitive spectral clustering can improve the robustness and stability of clustering results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
astral完成签到,获得积分10
刚刚
degemermat完成签到,获得积分10
1秒前
1秒前
烟花应助zzr采纳,获得10
3秒前
4秒前
彼岸发布了新的文献求助10
4秒前
5秒前
在水一方应助粗心的画板采纳,获得10
6秒前
konosuba完成签到,获得积分0
7秒前
十三号失眠完成签到 ,获得积分10
7秒前
7秒前
7秒前
舒适静丹完成签到,获得积分20
8秒前
9秒前
难逃月色完成签到 ,获得积分10
9秒前
10秒前
1111完成签到,获得积分10
10秒前
zzr完成签到,获得积分10
10秒前
浓浓完成签到 ,获得积分10
10秒前
舒适静丹发布了新的文献求助10
11秒前
12秒前
aki完成签到 ,获得积分10
13秒前
14秒前
serendipity完成签到 ,获得积分10
15秒前
单薄俊驰关注了科研通微信公众号
17秒前
Ryan完成签到 ,获得积分10
18秒前
18秒前
kxy0311完成签到 ,获得积分10
18秒前
19秒前
糖果完成签到 ,获得积分10
20秒前
妖哥完成签到,获得积分10
21秒前
21秒前
24秒前
七色光完成签到,获得积分10
24秒前
fsznc完成签到 ,获得积分0
24秒前
淡淡凡阳发布了新的文献求助10
25秒前
里里完成签到 ,获得积分10
25秒前
26秒前
彩色的翡翠完成签到,获得积分10
26秒前
成就书雪完成签到,获得积分0
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934895
求助须知:如何正确求助?哪些是违规求助? 4202593
关于积分的说明 13057993
捐赠科研通 3977141
什么是DOI,文献DOI怎么找? 2179362
邀请新用户注册赠送积分活动 1195516
关于科研通互助平台的介绍 1106915