SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmentation

分割 计算机科学 人工智能 深度学习 水准点(测量) 机器学习 学习迁移 一致性(知识库) 图像分割 模式识别(心理学) 计算机视觉 大地测量学 地理
作者
Ning Shen,Tingfa Xu,Ziyang Bian,Shiqi Huang,Feng Mu,Bo Huang,Yuze Xiao,Jianan Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2476-2489 被引量:18
标识
DOI:10.1109/tmi.2022.3193150
摘要

Automatic subcutaneous vessel imaging with near-infrared (NIR) optical apparatus can promote the accuracy of locating blood vessels, thus significantly contributing to clinical venipuncture research. Though deep learning models have achieved remarkable success in medical image segmentation, they still struggle in the subfield of subcutaneous vessel segmentation due to the scarcity and low-quality of annotated data. To relieve it, this work presents a novel semi-supervised learning framework, SCANet, that achieves accurate vessel segmentation through an alternate training strategy. The SCANet is composed of a multi-scale recurrent neural network that embeds coarse-to-fine features and two auxiliary branches, a consistency decoder and an adversarial learning branch, responsible for strengthening fine-grained details and eliminating differences between ground-truths and predictions, respectively. Equipped with a novel semi-supervised alternate training strategy, the three components work collaboratively, enabling SCANet to accurately segment vessel regions with only a handful of labeled data and abounding unlabeled data. Moreover, to mitigate the shortage of annotated data in this field, we provide a new subcutaneous vessel dataset, VESSEL-NIR. Extensive experiments on a wide variety of tasks, including the segmentation of subcutaneous vessels, retinal vessels, and skin lesions, well demonstrate the superiority and generality of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaiii完成签到,获得积分10
刚刚
焱焱不忘完成签到,获得积分0
1秒前
易拉罐罐发布了新的文献求助10
1秒前
嘿嘿应助wjw采纳,获得10
2秒前
哈哈队长2号完成签到,获得积分10
2秒前
3秒前
嘻嘻哈哈完成签到 ,获得积分10
3秒前
每文完成签到,获得积分10
4秒前
sll完成签到 ,获得积分10
4秒前
活泼外绣完成签到,获得积分20
5秒前
晴天发布了新的文献求助10
6秒前
糕糕关注了科研通微信公众号
7秒前
Z_xy完成签到,获得积分10
8秒前
HNDuan完成签到,获得积分10
8秒前
8秒前
9秒前
come发布了新的文献求助30
12秒前
CipherSage应助游畅采纳,获得10
12秒前
yinshan完成签到 ,获得积分10
13秒前
14秒前
北陌完成签到 ,获得积分10
14秒前
14秒前
14秒前
tjfwg完成签到,获得积分10
15秒前
farewell完成签到,获得积分10
16秒前
聪明的含之完成签到,获得积分10
17秒前
17秒前
12完成签到,获得积分20
17秒前
17秒前
Febrine0502完成签到,获得积分10
17秒前
淡然的菲鹰完成签到 ,获得积分10
18秒前
qinjiayin完成签到,获得积分10
19秒前
cloud发布了新的文献求助10
20秒前
ljlwh完成签到 ,获得积分10
21秒前
蘑菇蘑菇完成签到 ,获得积分10
22秒前
22秒前
Willwzh完成签到,获得积分10
24秒前
farewell发布了新的文献求助10
24秒前
FashionBoy应助tleeny采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304943
求助须知:如何正确求助?哪些是违规求助? 4451126
关于积分的说明 13851149
捐赠科研通 4338459
什么是DOI,文献DOI怎么找? 2381900
邀请新用户注册赠送积分活动 1377021
关于科研通互助平台的介绍 1344418