SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmentation

分割 计算机科学 人工智能 深度学习 水准点(测量) 机器学习 学习迁移 一致性(知识库) 图像分割 模式识别(心理学) 计算机视觉 大地测量学 地理
作者
Ning Shen,Tingfa Xu,Ziyang Bian,Shiqi Huang,Feng Mu,Bo Huang,Yuze Xiao,Jianan Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2476-2489 被引量:15
标识
DOI:10.1109/tmi.2022.3193150
摘要

Automatic subcutaneous vessel imaging with near-infrared (NIR) optical apparatus can promote the accuracy of locating blood vessels, thus significantly contributing to clinical venipuncture research. Though deep learning models have achieved remarkable success in medical image segmentation, they still struggle in the subfield of subcutaneous vessel segmentation due to the scarcity and low-quality of annotated data. To relieve it, this work presents a novel semi-supervised learning framework, SCANet, that achieves accurate vessel segmentation through an alternate training strategy. The SCANet is composed of a multi-scale recurrent neural network that embeds coarse-to-fine features and two auxiliary branches, a consistency decoder and an adversarial learning branch, responsible for strengthening fine-grained details and eliminating differences between ground-truths and predictions, respectively. Equipped with a novel semi-supervised alternate training strategy, the three components work collaboratively, enabling SCANet to accurately segment vessel regions with only a handful of labeled data and abounding unlabeled data. Moreover, to mitigate the shortage of annotated data in this field, we provide a new subcutaneous vessel dataset, VESSEL-NIR. Extensive experiments on a wide variety of tasks, including the segmentation of subcutaneous vessels, retinal vessels, and skin lesions, well demonstrate the superiority and generality of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助potatosi采纳,获得10
1秒前
斯文败类应助helly采纳,获得10
1秒前
xuyudi完成签到 ,获得积分10
1秒前
洛洛发布了新的文献求助10
1秒前
云~发布了新的文献求助10
2秒前
2秒前
djiwisksk66应助鳄鱼蛋采纳,获得10
3秒前
Ayu发布了新的文献求助10
3秒前
4秒前
yuanquaner发布了新的文献求助10
4秒前
Owen应助Gzdaigzn采纳,获得10
4秒前
maizai发布了新的文献求助10
4秒前
芜湖发布了新的文献求助10
6秒前
Lucas应助xxx采纳,获得10
6秒前
热心市民小红花应助longchb采纳,获得10
6秒前
冷静远望完成签到,获得积分10
6秒前
活泼万言完成签到,获得积分10
7秒前
菜系发布了新的文献求助10
7秒前
Zachary完成签到 ,获得积分10
7秒前
南吕廿八完成签到,获得积分10
8秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
8秒前
Owen应助擦撒擦擦采纳,获得10
8秒前
害羞新柔完成签到,获得积分10
8秒前
11完成签到,获得积分10
8秒前
9秒前
9秒前
tks发布了新的文献求助10
10秒前
10秒前
甜甜的冰双完成签到,获得积分10
10秒前
10秒前
10秒前
栉风沐雨发布了新的文献求助10
11秒前
hi_zhanghao完成签到,获得积分0
11秒前
隐形曼青应助源源元采纳,获得10
12秒前
健忘捕完成签到,获得积分10
12秒前
12秒前
温馨发布了新的文献求助20
12秒前
12秒前
13秒前
芜湖完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993