🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals

计算机科学 人工智能 卷积神经网络 脑-机接口 模式识别(心理学) 深度学习 学习迁移 运动表象 脑电图 支持向量机 联营 机器学习 心理学 精神科
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:143: 105288-105288 被引量:112
标识
DOI:10.1016/j.compbiomed.2022.105288
摘要

In the Motor Imagery (MI)-based Brain Computer Interface (BCI), users' intention is converted into a control signal through processing a specific pattern in brain signals reflecting motor characteristics. There are such restrictions as the limited size of the existing datasets and low signal to noise ratio in the classification of MI Electroencephalogram (EEG) signals. Machine learning (ML) methods, particularly Deep Learning (DL), have overcome these limitations relatively. In this study, three hybrid models were proposed to classify the EEG signal in the MI-based BCI. The proposed hybrid models consist of the convolutional neural networks (CNN) and the Long-Short Term Memory (LSTM). In the first model, the CNN with different number of convolutional-pooling blocks (from shallow to deep CNN) was examined; a two-block CNN model not affected by the vanishing gradient descent and yet able to extract desirable features employed; the second and third models contained pre-trained CNNs conducing to the exploration of more complex features. The transfer learning strategy and data augmentation methods were applied to overcome the limited size of the datasets by transferring learning from one model to another. This was achieved by employing two powerful pre-trained convolutional neural networks namely ResNet-50 and Inception-v3. The continuous wavelet transform (CWT) was used to generate images for the CNN. The performance of the proposed models was evaluated on the BCI Competition IV dataset 2a. The mean accuracy vlaues of 86%, 90%, and 92%, and mean Kappa values of 81%, 86%, and 88% were obtained for the hybrid neural network with the customized CNN, the hybrid neural network with ResNet-50 and the hybrid neural network with Inception-v3, respectively. Despite the promising performance of the three proposed models, the hybrid neural network with Inception-v3 outperformed the two other models. The best obtained result in the present study improved the previous best result in the literature by 7% in terms of classification accuracy. From the findings, it can be concluded that transfer learning based on a pre-trained CNN in combination with LSTM is a novel method in MI-based BCI. The study also has implications for the discrimination of motor imagery tasks in each EEG recording channel and in different brain regions which can reduce computational time in future works by only selecting the most effective channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月29日)
1#22 nozero
11
110
2#16 小杨同学
8
80
3#13 kyri
2
110
4#12 levn
6
60
5#6 Nichols
3
30
6#4 cllcx
2
20
7#4 天黑不打烊
2
20
8#4 遇上就这样吧
2
20
9#4 shinysparrow
2
20
10#2 pcr163
1
10
11#2 MchemG
1
10
12#2 andrele
1
10
13#2 anagenesis
1
10
第1名:50元;第2名:30元;第3名:10元

总排名
1#7493 nozero
3000
44930
2#7090 SYLH
3535
35550
3#6147 shinysparrow
2531
36160
4#5943 科研小民工
2282
36610
5#3902 xjcy
1944
19580
6#2707 劲秉
596
21110
7#2490 小透明
986
15040
8#1891 天才小能喵
901
9900
9#1796 迟大猫
898
8980
10#1464 CAOHOU
728
7360
11#1200 S77
600
6000
12#1162 昏睡的蟠桃
296
8660
13#1072 加菲丰丰
532
5400
14#1037 从容芮
437
6000
15#978 浦肯野
403
5750
16#840 子车茗
386
4540
17#829 36456657
404
4250
18#790 枫叶
392
3980
19#654 毛豆
325
3290
20#647 tuanheqi
56
5910
21#638 果粒橙
319
3190
22#614 1+1
263
3510
23#588 cdercder
237
3510
24#564 QOP
280
2840
25#523 史小菜
241
2820
26#514 pcr163
54
4600
27#509 curtisness
249
2600
28#452 彭于彦祖
127
3250
29#432 研友_Z30GJ8
215
2170
30#394 实验好难
182
2120
31#370 Catalina_S
182
1880
32#369 我是站长才怪
181
1880
33#342 Singularity
170
1720
34#326 默默地读文献
163
1630
35#308 HEIKU
154
1540
36#294 柒月
49
2450
37#294 VDC
97
1970
38#294 不懈奋进
131
1630
39#292 lin
145
1470
40#288 火星上的菲鹰
138
1500
41#284 lyl19880908
140
1440
42#283 点着太阳的人
98
1850
43#274 一一
89
1850
44#273 sunyz
51
2220
45#272 muxiangrong
117
1550
46#270 遇上就这样吧
129
1410
47#266 cctv18
131
1350
48#259 suibianba
122
1370
49#258 从容的惋庭
129
1290
50#254 见青山
126
1280
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
Miscxdence完成签到,获得积分10
12秒前
27秒前
57秒前
jyy发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
1分钟前
华仔应助LZY采纳,获得10
1分钟前
Anyemzl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
无花果应助Corn_Dog采纳,获得10
2分钟前
2分钟前
Corn_Dog发布了新的文献求助10
2分钟前
2分钟前
西门夏寒完成签到,获得积分10
2分钟前
2分钟前
Corn_Dog完成签到,获得积分10
2分钟前
2分钟前
ks完成签到,获得积分10
2分钟前
浪哒哒完成签到,获得积分10
2分钟前
2分钟前
在水一方应助siso采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Greyyyy发布了新的文献求助30
2分钟前
狂野听荷发布了新的文献求助10
2分钟前
时间煮雨我煮鱼完成签到,获得积分10
2分钟前
2分钟前
隐形曼青应助狂野听荷采纳,获得10
2分钟前
干辣椒完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助hxy采纳,获得10
3分钟前
仁者无惧完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
NSF/ANSI 49-2024 Biosafety Cabinetry: Design, Construction, Performance, and Field Certification 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3642822
求助须知:如何正确求助?哪些是违规求助? 3210422
关于积分的说明 9680556
捐赠科研通 2917498
什么是DOI,文献DOI怎么找? 1596859
邀请新用户注册赠送积分活动 751792
科研通“疑难数据库(出版商)”最低求助积分说明 731699