Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation

卷积神经网络 深度学习 抗压强度 计算机科学 人工神经网络 人工智能 试验数据 机器学习 磨细高炉矿渣 粉煤灰 工程类 废物管理 材料科学 复合材料 程序设计语言
作者
Ning Chen,Shibo Zhao,Zhiwei Gao,Dawei Wang,Pengfei Liu,Markus Oeser,Yue Hou,Linbing Wang
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:323: 126580-126580 被引量:46
标识
DOI:10.1016/j.conbuildmat.2022.126580
摘要

The adding of industrial wastes, including blast furnace slag and fly ash, to concrete materials will not only improve the working performance, but also significantly reduce the carbon emissions and promote the green development in civil engineering area. The traditional material designs are mainly indoor laboratory-based, which is complex and time-consuming. In this study, a virtual material design method, including deep data augmentation methods and deep learning methods, was employed to predict the compressive strength of concrete with industrial wastes. Three types of Generative Adversarial Networks (GANs) were employed to augment the original data and the results were evaluated. The test was conducted based on a small experiment dataset from previous literature, comparing with traditional machine learning methods. Test results show that the deep learning methods have the highest accuracy in compressive strength prediction, increasing from 0.90 to 0.98 (Visual Geometry Group, VGG) and from 0.83 to 0.96 (One-Dimensional Convolutional Neural Network, 1D CNN) after deep data augmentation, where the prediction accuracy of Random Forest (RF) and Support Vector Regressive (SVR) in traditional machine learning algorithms increase from 0.91 to 0.96 and from 0.78 to 0.86, respectively. In addition, a lightweight deep convolutional neural network was designed based on the augmented dataset. The results show that the lightweight model can improve the computation efficiency, reduce the complexity of the model compared with the original model, and reach a great prediction accuracy. The proposed study can facilitate the concrete material design with industrial wastes with less labor and time cost compared with traditional ones, thus can provide a cleaner solution for the whole industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昨夜雨疏风骤完成签到,获得积分10
刚刚
刚刚
义气语儿完成签到,获得积分10
1秒前
辛勤天奇完成签到,获得积分10
2秒前
2秒前
Eric_zhu发布了新的文献求助10
2秒前
2秒前
武傲翔发布了新的文献求助10
3秒前
3秒前
哭泣的书竹完成签到,获得积分10
3秒前
4秒前
wang发布了新的文献求助10
4秒前
xy发布了新的文献求助10
4秒前
5秒前
王文茹发布了新的文献求助10
5秒前
张嘉伟发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
乐乐应助楼下太吵了采纳,获得10
6秒前
lzzzzz完成签到,获得积分10
8秒前
lulu完成签到,获得积分10
8秒前
bluesiryao发布了新的文献求助10
8秒前
在水一方应助真实的麦片采纳,获得10
9秒前
dilibolaba发布了新的文献求助10
9秒前
善学以致用应助小龙锅采纳,获得10
9秒前
9秒前
温乘云完成签到,获得积分10
10秒前
Lucas应助士兵许三多采纳,获得10
10秒前
Jasper应助泽普采纳,获得10
10秒前
和谐的数据线完成签到,获得积分10
10秒前
王一帆发布了新的文献求助10
11秒前
11秒前
guohuameike完成签到,获得积分10
11秒前
ZZW完成签到,获得积分10
11秒前
lulu发布了新的文献求助10
12秒前
豆浆来点蒜泥完成签到,获得积分10
12秒前
bkagyin应助dilibolaba采纳,获得10
12秒前
清秀的天德完成签到,获得积分10
12秒前
wang完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110