Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation

卷积神经网络 深度学习 抗压强度 计算机科学 人工神经网络 人工智能 试验数据 机器学习 磨细高炉矿渣 粉煤灰 工程类 废物管理 材料科学 复合材料 程序设计语言
作者
Ning Chen,Shibo Zhao,Zhiwei Gao,Dawei Wang,Pengfei Liu,Markus Oeser,Yue Hou,Linbing Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:323: 126580-126580 被引量:31
标识
DOI:10.1016/j.conbuildmat.2022.126580
摘要

The adding of industrial wastes, including blast furnace slag and fly ash, to concrete materials will not only improve the working performance, but also significantly reduce the carbon emissions and promote the green development in civil engineering area. The traditional material designs are mainly indoor laboratory-based, which is complex and time-consuming. In this study, a virtual material design method, including deep data augmentation methods and deep learning methods, was employed to predict the compressive strength of concrete with industrial wastes. Three types of Generative Adversarial Networks (GANs) were employed to augment the original data and the results were evaluated. The test was conducted based on a small experiment dataset from previous literature, comparing with traditional machine learning methods. Test results show that the deep learning methods have the highest accuracy in compressive strength prediction, increasing from 0.90 to 0.98 (Visual Geometry Group, VGG) and from 0.83 to 0.96 (One-Dimensional Convolutional Neural Network, 1D CNN) after deep data augmentation, where the prediction accuracy of Random Forest (RF) and Support Vector Regressive (SVR) in traditional machine learning algorithms increase from 0.91 to 0.96 and from 0.78 to 0.86, respectively. In addition, a lightweight deep convolutional neural network was designed based on the augmented dataset. The results show that the lightweight model can improve the computation efficiency, reduce the complexity of the model compared with the original model, and reach a great prediction accuracy. The proposed study can facilitate the concrete material design with industrial wastes with less labor and time cost compared with traditional ones, thus can provide a cleaner solution for the whole industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹亮的星空完成签到,获得积分0
1秒前
愉快的金针菇关注了科研通微信公众号
2秒前
穆紫应助尹雪儿采纳,获得10
3秒前
DongWei95完成签到,获得积分10
4秒前
5秒前
巴啦啦小魔仙完成签到,获得积分10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
passionate完成签到,获得积分10
6秒前
sevten完成签到 ,获得积分10
6秒前
清都完成签到 ,获得积分10
6秒前
幽默的南霜完成签到,获得积分10
8秒前
11发布了新的文献求助10
10秒前
li1发布了新的文献求助10
10秒前
发财完成签到,获得积分10
11秒前
威武诺言完成签到,获得积分10
11秒前
12秒前
12秒前
乐乐应助sahcygv采纳,获得10
13秒前
忙碌的数学人完成签到,获得积分10
13秒前
btutou完成签到 ,获得积分20
13秒前
14秒前
科科研研完成签到,获得积分10
14秒前
微笑芒果完成签到 ,获得积分10
15秒前
16秒前
Hh完成签到,获得积分10
17秒前
18秒前
许木子发布了新的文献求助10
19秒前
yingtian关注了科研通微信公众号
19秒前
科科研研发布了新的文献求助10
20秒前
xxlbp完成签到,获得积分10
20秒前
21秒前
21秒前
wangtubianou发布了新的文献求助10
21秒前
CipherSage应助屁王采纳,获得10
23秒前
yyy完成签到,获得积分10
24秒前
娟娟完成签到,获得积分10
24秒前
悦悦发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323