Determination of trans‐fatty acids in food samples based on the precolumn fluorescence derivatization by high performance liquid chromatography

色谱法 衍生化 试剂 化学 荧光 高效液相色谱法 检出限 脂肪酸 有机化学 量子力学 物理
作者
Feihua Wang,Xiao‐Feng Guo,Yao‐Cheng Fan,Haibin Tang,Wei Liang,Hong Wang
出处
期刊:Journal of Separation Science [Wiley]
卷期号:45 (8): 1425-1433 被引量:3
标识
DOI:10.1002/jssc.202100792
摘要

Trans-fatty acids are unsaturated fatty acids that are considered to have health risks. 1,3,5,7-Tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-indacene is a highly sensitive fluorescent labeling reagent for carboxylic acids developed by our lab. In this study, using this precolumn fluorescent derivatization reagent, a rapid and accurate high-performance liquid chromatography with fluorescence detection method was developed for the determination of two trans-fatty acids in food samples. Under the optimized derivative conditions, two trans-fatty acids were tagged with the fluorescent labeling reagent in the presence of 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide at 25°C for 30 min. Then, the baseline separation of trans- and cis-fatty acids and their saturated fatty acid with similar structures was achieved with less interference using a reversed-phased C18 column with isocratic elution in 14 min. With fluorescence detection at λex /λem = 490 /510 nm, the linear range of the TFAs was 1.0-200 nM with low detection limits in the range of 0.1-0.2 nM (signal-to-noise ratio = 3). In addition, the proposed approach was successfully applied for the detection of trans-fatty acids in food samples, and the recoveries using this method ranged from 96.02 to 109.22% with low relative standard deviations of 1.2-4.3% (n = 6).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
rstorz完成签到,获得积分10
1秒前
wzxxxx发布了新的文献求助10
2秒前
方方方方神完成签到,获得积分20
2秒前
WiLDPiG433完成签到,获得积分10
2秒前
3秒前
Jasper应助椰子采纳,获得10
3秒前
Stormi发布了新的文献求助10
3秒前
jym发布了新的文献求助10
3秒前
3秒前
Maigret完成签到,获得积分10
4秒前
两飞飞完成签到,获得积分10
4秒前
4秒前
韭菜盒子发布了新的文献求助10
5秒前
ximu完成签到,获得积分20
5秒前
CLN完成签到,获得积分10
5秒前
SciGPT应助单薄凌蝶采纳,获得50
6秒前
6秒前
111完成签到,获得积分10
6秒前
小马甲应助117采纳,获得10
6秒前
甜甜的猫咪完成签到,获得积分10
6秒前
6秒前
66应助马佳凯采纳,获得10
6秒前
7秒前
是述不是沭完成签到,获得积分10
7秒前
8秒前
lei完成签到,获得积分10
8秒前
瘦瘦的背包完成签到,获得积分10
9秒前
9秒前
赘婿应助Elaine采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研小白完成签到,获得积分10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得50
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740