A Design of FPGA-Based Neural Network PID Controller for Motion Control System

PID控制器 现场可编程门阵列 计算机科学 反向传播 控制系统 脉冲宽度调制 控制器(灌溉) 人工神经网络 控制理论(社会学) 编码器 计算机硬件 控制工程 工程类 温度控制 控制(管理) 电气工程 操作系统 机器学习 人工智能 生物 电压 农学
作者
Jun Wang,Moudao Li,Weibin Jiang,Yanwei Huang,Ruiquan Lin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 889-889 被引量:13
标识
DOI:10.3390/s22030889
摘要

In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红茶冰可可完成签到 ,获得积分10
刚刚
cherish发布了新的文献求助10
1秒前
我是老大应助紧张的寻冬采纳,获得10
1秒前
zpy发布了新的文献求助20
2秒前
2秒前
莹儿发布了新的文献求助10
3秒前
已歌发布了新的文献求助10
4秒前
5秒前
汉堡包应助hhs采纳,获得10
5秒前
6秒前
6秒前
6秒前
汉堡包应助茫然树茫然果采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
大个应助迷人灰狼采纳,获得10
9秒前
TTT发布了新的文献求助10
9秒前
清秀的大山完成签到,获得积分10
9秒前
清枫完成签到,获得积分10
10秒前
10秒前
FashionBoy应助智商洼地采纳,获得10
10秒前
田様应助谷策采纳,获得10
11秒前
张zz发布了新的文献求助10
12秒前
jzt12138发布了新的文献求助10
13秒前
流氓煎蛋发布了新的文献求助10
13秒前
清枫发布了新的文献求助10
13秒前
newbiology完成签到 ,获得积分10
13秒前
14秒前
研友_V8RQEZ完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
橘子发布了新的文献求助10
18秒前
已知中的未知完成签到 ,获得积分10
18秒前
18秒前
温柔的吐司完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636