A Design of FPGA-Based Neural Network PID Controller for Motion Control System

PID控制器 现场可编程门阵列 计算机科学 反向传播 控制系统 脉冲宽度调制 控制器(灌溉) 人工神经网络 控制理论(社会学) 编码器 计算机硬件 控制工程 工程类 温度控制 控制(管理) 电气工程 操作系统 机器学习 人工智能 生物 电压 农学
作者
Jun Wang,Moudao Li,Weibin Jiang,Yanwei Huang,Ruiquan Lin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 889-889 被引量:13
标识
DOI:10.3390/s22030889
摘要

In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
vvi发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
miao3718完成签到 ,获得积分10
2秒前
3秒前
无花果应助colin采纳,获得10
3秒前
luckypig完成签到,获得积分10
3秒前
wyf发布了新的文献求助30
4秒前
不知名的呆毛完成签到,获得积分10
4秒前
曾经富完成签到,获得积分10
4秒前
李沐唅完成签到 ,获得积分10
4秒前
5秒前
Ambit完成签到,获得积分20
5秒前
张小完成签到,获得积分20
6秒前
8秒前
TingtingGZ发布了新的文献求助10
8秒前
8秒前
9秒前
claud完成签到 ,获得积分10
10秒前
勤恳元枫完成签到,获得积分10
10秒前
10秒前
11秒前
自由醉薇完成签到 ,获得积分10
12秒前
蔚蓝天空完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
小小的手心完成签到,获得积分10
13秒前
卷卷完成签到,获得积分10
14秒前
15秒前
15秒前
顺利毕业完成签到,获得积分10
15秒前
Ambit发布了新的文献求助30
16秒前
wkjfh应助科研通管家采纳,获得10
16秒前
orixero应助懒羊羊大王采纳,获得10
16秒前
一二应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952