A Design of FPGA-Based Neural Network PID Controller for Motion Control System

PID控制器 现场可编程门阵列 计算机科学 反向传播 控制系统 脉冲宽度调制 控制器(灌溉) 人工神经网络 控制理论(社会学) 编码器 计算机硬件 控制工程 工程类 温度控制 控制(管理) 电气工程 操作系统 机器学习 人工智能 生物 电压 农学
作者
Jun Wang,Moudao Li,Weibin Jiang,Yanwei Huang,Ruiquan Lin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 889-889 被引量:13
标识
DOI:10.3390/s22030889
摘要

In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助安安采纳,获得10
刚刚
刚刚
1秒前
1秒前
娃娃菜妮发布了新的文献求助10
1秒前
orange发布了新的文献求助10
1秒前
2秒前
去玩儿发布了新的文献求助10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
滕可燕完成签到,获得积分10
2秒前
3秒前
小蘑菇应助刚国忠采纳,获得10
3秒前
mylove应助Sid采纳,获得10
4秒前
承乐发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
王宽宽宽完成签到,获得积分10
6秒前
6秒前
科研通AI6应助13nnk采纳,获得10
7秒前
程昌盛完成签到,获得积分10
7秒前
Aprilapple发布了新的文献求助10
7秒前
8秒前
华仔应助一十六采纳,获得10
8秒前
8秒前
完美世界应助王彦林采纳,获得10
8秒前
去玩儿完成签到,获得积分20
9秒前
9秒前
王宽宽宽发布了新的文献求助10
9秒前
lwq发布了新的文献求助10
9秒前
Grace完成签到,获得积分10
10秒前
华仔应助YaHaa采纳,获得10
11秒前
滕可燕发布了新的文献求助10
11秒前
爆米花应助陈甜甜采纳,获得10
12秒前
摆烂小鱼鱼完成签到 ,获得积分10
12秒前
Lucas应助韩麒嘉采纳,获得10
12秒前
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836