A Design of FPGA-Based Neural Network PID Controller for Motion Control System

PID控制器 现场可编程门阵列 计算机科学 反向传播 控制系统 脉冲宽度调制 控制器(灌溉) 人工神经网络 控制理论(社会学) 编码器 计算机硬件 控制工程 工程类 温度控制 控制(管理) 电气工程 操作系统 机器学习 人工智能 生物 电压 农学
作者
Jun Wang,Moudao Li,Weibin Jiang,Yanwei Huang,Ruiquan Lin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 889-889 被引量:13
标识
DOI:10.3390/s22030889
摘要

In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0074完成签到 ,获得积分10
2秒前
白玫瑰完成签到,获得积分10
5秒前
6秒前
hou发布了新的文献求助10
7秒前
逍遥完成签到,获得积分10
9秒前
完美怀蕾完成签到,获得积分10
9秒前
BOHO发布了新的文献求助10
10秒前
不溜馍发布了新的文献求助10
10秒前
11秒前
Silole发布了新的文献求助10
11秒前
大模型应助胡锦霞采纳,获得10
12秒前
12秒前
光热效应发布了新的文献求助20
12秒前
华子的五A替身完成签到,获得积分10
13秒前
fangplus完成签到,获得积分10
15秒前
16秒前
DEAhuan发布了新的文献求助10
16秒前
典雅的夜安完成签到,获得积分10
16秒前
16秒前
17秒前
chen2005133发布了新的文献求助10
21秒前
香蕉以菱发布了新的文献求助10
22秒前
NexusExplorer应助光热效应采纳,获得10
23秒前
Vivian薇薇安完成签到,获得积分10
23秒前
JamesPei应助军军问问张采纳,获得10
23秒前
魔幻以菱完成签到 ,获得积分10
24秒前
24秒前
25秒前
传统的小海豚完成签到,获得积分10
26秒前
胡锦霞发布了新的文献求助10
28秒前
28秒前
28秒前
30秒前
Silole发布了新的文献求助10
30秒前
zpz完成签到 ,获得积分10
31秒前
Amih发布了新的文献求助10
33秒前
爱吃年糕发布了新的文献求助10
33秒前
NexusExplorer应助杨仲文采纳,获得30
33秒前
华仔应助Dphile采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373683
求助须知:如何正确求助?哪些是违规求助? 4499724
关于积分的说明 14007089
捐赠科研通 4406596
什么是DOI,文献DOI怎么找? 2420552
邀请新用户注册赠送积分活动 1413357
关于科研通互助平台的介绍 1389902