物理吸附
吸附
活性炭
去壳
弗伦德利希方程
吸附
化学
化学吸附
朗缪尔
核化学
朗缪尔吸附模型
打赌理论
有机化学
植物
生物
作者
Shuang Wang,Yu-Ri Lee,Yooseob Won,Hana Kim,Se-Eun Jeong,Byung Wook Hwang,A. Ra Cho,Jae‐Young Kim,Young Cheol Park,Hyungseok Nam,Dong‐Ho Lee,Sung-Ho Jo
标识
DOI:10.1016/j.cej.2022.135378
摘要
Relatively high indoor CO2 concentration (greater than 1000 ppm) has a negative impact on human health. In this work, a cost-effective CO2 adsorbent (DKOH-AC) was developed by impregnating KOH on rice husk-based KOH activated carbon (KOH-AC, 1439 m2/g). KOH can be successfully loaded on the surface of KOH-AC and significantly changed its surface properties. DKOH-AC still remained a considerable surface area (206 m2/g) and showed a similar Smicro/SBET ratio. In-situ FTIR analysis confirmed that the major CO2 adsorption mechanism of KOH-AC was based on physisorption while that on DKOH-AC involved both chemisorption and physisorption. DKOH-AC showed a higher heat of adsorption (34 ∼ 41 KJ/mol) and gas selectivity (16.6) than these of KOH-AC. KOH-AC quickly reached an adsorption equilibrium (about 50 min) as compared to that of DKOH-AC. In addition, DKOH-AC exhibited an excellent adsorption performance of 2.1 mmol/g for a low concentration of CO2 (2000 ppm ∼ 500 ppm) under indoor conditions. Both the CO2 adsorption isotherm on KOH-AC and DKOH-AC well followed the Langmuir and Freundlich models. The CO2 adsorption kinetics on KOH-AC followed the pseudo-first order model whereas that on DKOH-AC obeyed the pseudo-second order model. The adsorption process was controlled by the intraparticle diffusion combined with the film diffusion model.
科研通智能强力驱动
Strongly Powered by AbleSci AI