A dynamical spatial-temporal graph neural network for traffic demand prediction

计算机科学 可解释性 推论 图形 嵌入 图嵌入 人工智能 数据挖掘 机器学习 理论计算机科学
作者
Feihu Huang,Peiyu Yi,Jince Wang,Mengshi Li,Jian Peng,Xi Xiong
出处
期刊:Information Sciences [Elsevier]
卷期号:594: 286-304 被引量:46
标识
DOI:10.1016/j.ins.2022.02.031
摘要

Traffic demand prediction is significant and practical in the resource scheduling of transportation application systems. Meanwhile, it remains a challenging topic due to the complexities of contextual effects and the highly dynamic nature of demand. Many works based on graph neural network (GNN) have recently been proposed to cope with this task. However, most previous studies treat the spatial dependence as a static graph, and their inference mechanism lacks interpretability. To address the issues, a Dynamical Spatial-Temporal Graph Neural Network model (DSTGNN) is proposed in this paper. DSTGNN has two critical phases: (1) Creating a spatial dependence graph. To capture the dynamical relationship, we propose building a spatial graph based on the stability of node’s spatial dependence. (2) Inferring intensity. We model the changing demand process using the inhomogeneous Poisson process, which addresses the interpretability issue, and build a spatial-temporal embedding network to infer the intensity. Specifically, the spatial-temporal embedding network integrates the diffusion convolution neural network (DCNN) and a modified transformer. Extensive experiments are carried out on two real data sets, and the experimental results demonstrate that the performance of DSTGNN outperforms the state-of-the-art models on traffic demand prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助Wqian采纳,获得10
3秒前
3秒前
7秒前
15秒前
16秒前
科目三应助朴素的松采纳,获得10
17秒前
Jodie发布了新的文献求助10
20秒前
20秒前
Heinrich完成签到,获得积分10
21秒前
Lucas应助inter采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
28秒前
Orange应助科研通管家采纳,获得10
28秒前
Verity应助科研通管家采纳,获得10
28秒前
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
28秒前
苏新天完成签到 ,获得积分10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
Liangang应助科研通管家采纳,获得10
28秒前
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
huanger应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
小新应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
一叶知秋应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
31秒前
跳跃的翼完成签到,获得积分10
34秒前
健忘可愁完成签到,获得积分10
35秒前
跳跃的翼发布了新的文献求助10
36秒前
37秒前
无花果应助加百莉采纳,获得10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550