W‐Transformer: Accurate Cobb angles estimation by using a transformer‐based hybrid structure

柯布角 脊柱侧凸 科布 地标 变压器 残余物 人工智能 计算机科学 模式识别(心理学) 计算机视觉 数学 医学 算法 工程类 外科 电气工程 生物 电压 遗传学
作者
Yifan Yao,Wenjun Yu,Yongbin Gao,Jiuqing Dong,Qiangqiang Xiao,Bo Huang,Zhicai SHI
出处
期刊:Medical Physics [Wiley]
卷期号:49 (5): 3246-3262 被引量:14
标识
DOI:10.1002/mp.15561
摘要

Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.The aim of this paper is to propose an automatic system for landmark detection and Cobb angle estimation, which can effectively help clinicians diagnose and treat scoliosis.A novel hybrid framework was proposed to measure Cobb angle precisely for clinical diagnosis, which was referred as W-Transformer due to its w-shaped architecture. First, a convolutional neural network of cascade residual blocks as our backbone was designed. Then a transformer was fused to learn the dependency information between spine and landmarks. In addition, a reinforcement branch was designed to improve the overlap of landmarks, and an improved prediction module was proposed to fine-tune the final coordinates of landmarks in Cobb angles estimation. Besides, the public Accurate Automated Spinal Curvature Estimation (AASCE) MICCAI 2019 challenge was served as data set. It supplies 609 manually labeled spine anterior-posterior (AP) X-ray images, each of which contains a total of 68 landmark labels and three Cobb Angles tags.From the perspective of the AASCE MICCAI 2019 challenge, we achieved a lower symmetric mean absolute percentage error (SMAPE) of 8.26% for all Cobb angles and the lowest averaged detection error of 50.89 in terms of landmark detection, compared with many state-of-the-art methods. We also provided the SMAPEs for the Cobb angles of the proximal-thoracic (PT), the main-thoracic (MT), and the thoracic-lumbar (TL) area, which are 5.27%, 14.59%, and 20.97% respectively, however, these data were not covered in most previous studies. Statistical analysis demonstrates that our model has obtained a high level of Pearson correlation coefficient of 0.9398 ( p<0.001$p<0.001$ ), which shows excellent reliability of our model. Our model can yield 0.9489 ( p<0.001$p<0.001$ ), 0.8817 ( p<0.001$p<0.001$ ), and 0.9149 ( p<0.001$p<0.001$ ) for PT, MT, and TL, respectively. The overall variability of Cobb angle measurement is less than 4 ∘$^\circ$ , implying clinical value. And the mean absolute deviation (standard deviation) for three regions is 3.64 ∘$^\circ$ (4.13 ∘$^\circ$ ), 3.84 ∘$^\circ$ (4.66 ∘$^\circ$ ), and 3.80 ∘$^\circ$ (4.19 ∘$^\circ$ ). The results of Student paired t$t$ -test indicate that no statistically significant differences are observed between manual measurement and our automatic approach ( p$p$ -value is always >$>$ 0.05). Regarding the diagnosis of scoliosis (Cobb angle >$>$ 10 ∘$^\circ$ ), the proposed method achieves a high sensitivity of 0.9577 and a specificity of 0.8475 for all spinal regions.This study offers a brand-new automatic approach that is potentially of great benefit of the complex task of landmark detection and Cobb angle evaluation, which can provide helpful navigation information about the early diagnosis of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璨澄完成签到 ,获得积分10
1秒前
4秒前
Axel完成签到,获得积分10
8秒前
科科通通完成签到,获得积分10
8秒前
shacodow完成签到,获得积分10
14秒前
ChatGPT完成签到,获得积分10
16秒前
xiuxiu125完成签到,获得积分10
16秒前
大民王完成签到,获得积分10
18秒前
ll完成签到,获得积分10
18秒前
瞿人雄完成签到,获得积分10
20秒前
没心没肺完成签到,获得积分10
22秒前
Ho完成签到,获得积分10
23秒前
1002SHIB完成签到,获得积分10
24秒前
nihaolaojiu完成签到,获得积分10
25秒前
sheetung完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
麦田麦兜完成签到,获得积分10
26秒前
卡卡光波完成签到,获得积分10
29秒前
40秒前
flying蝈蝈发布了新的文献求助10
46秒前
小小怪完成签到 ,获得积分10
53秒前
芝诺的乌龟完成签到 ,获得积分0
53秒前
Harlotte完成签到 ,获得积分10
58秒前
热带蚂蚁完成签到 ,获得积分10
59秒前
丝丢皮得完成签到 ,获得积分10
1分钟前
1分钟前
研究新人完成签到,获得积分10
1分钟前
君君发布了新的文献求助10
1分钟前
flying蝈蝈发布了新的文献求助20
1分钟前
hzhz完成签到,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
flying蝈蝈完成签到,获得积分10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
冷静丸子完成签到 ,获得积分10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
君君完成签到,获得积分10
1分钟前
fanssw完成签到 ,获得积分10
1分钟前
xxm完成签到 ,获得积分10
1分钟前
HCT完成签到,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The New Psychology of Health 500
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5200371
求助须知:如何正确求助?哪些是违规求助? 4380603
关于积分的说明 13639391
捐赠科研通 4237371
什么是DOI,文献DOI怎么找? 2324707
邀请新用户注册赠送积分活动 1322683
关于科研通互助平台的介绍 1274304