W‐Transformer: Accurate Cobb angles estimation by using a transformer‐based hybrid structure

柯布角 脊柱侧凸 科布 地标 变压器 残余物 人工智能 计算机科学 模式识别(心理学) 计算机视觉 数学 医学 算法 工程类 外科 电气工程 生物 电压 遗传学
作者
Yifan Yao,Wenjun Yu,Yongbin Gao,Jiuqing Dong,Qiangqiang Xiao,Bo Huang,Zhicai SHI
出处
期刊:Medical Physics [Wiley]
卷期号:49 (5): 3246-3262 被引量:14
标识
DOI:10.1002/mp.15561
摘要

Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.The aim of this paper is to propose an automatic system for landmark detection and Cobb angle estimation, which can effectively help clinicians diagnose and treat scoliosis.A novel hybrid framework was proposed to measure Cobb angle precisely for clinical diagnosis, which was referred as W-Transformer due to its w-shaped architecture. First, a convolutional neural network of cascade residual blocks as our backbone was designed. Then a transformer was fused to learn the dependency information between spine and landmarks. In addition, a reinforcement branch was designed to improve the overlap of landmarks, and an improved prediction module was proposed to fine-tune the final coordinates of landmarks in Cobb angles estimation. Besides, the public Accurate Automated Spinal Curvature Estimation (AASCE) MICCAI 2019 challenge was served as data set. It supplies 609 manually labeled spine anterior-posterior (AP) X-ray images, each of which contains a total of 68 landmark labels and three Cobb Angles tags.From the perspective of the AASCE MICCAI 2019 challenge, we achieved a lower symmetric mean absolute percentage error (SMAPE) of 8.26% for all Cobb angles and the lowest averaged detection error of 50.89 in terms of landmark detection, compared with many state-of-the-art methods. We also provided the SMAPEs for the Cobb angles of the proximal-thoracic (PT), the main-thoracic (MT), and the thoracic-lumbar (TL) area, which are 5.27%, 14.59%, and 20.97% respectively, however, these data were not covered in most previous studies. Statistical analysis demonstrates that our model has obtained a high level of Pearson correlation coefficient of 0.9398 ( p<0.001$p<0.001$ ), which shows excellent reliability of our model. Our model can yield 0.9489 ( p<0.001$p<0.001$ ), 0.8817 ( p<0.001$p<0.001$ ), and 0.9149 ( p<0.001$p<0.001$ ) for PT, MT, and TL, respectively. The overall variability of Cobb angle measurement is less than 4 ∘$^\circ$ , implying clinical value. And the mean absolute deviation (standard deviation) for three regions is 3.64 ∘$^\circ$ (4.13 ∘$^\circ$ ), 3.84 ∘$^\circ$ (4.66 ∘$^\circ$ ), and 3.80 ∘$^\circ$ (4.19 ∘$^\circ$ ). The results of Student paired t$t$ -test indicate that no statistically significant differences are observed between manual measurement and our automatic approach ( p$p$ -value is always >$>$ 0.05). Regarding the diagnosis of scoliosis (Cobb angle >$>$ 10 ∘$^\circ$ ), the proposed method achieves a high sensitivity of 0.9577 and a specificity of 0.8475 for all spinal regions.This study offers a brand-new automatic approach that is potentially of great benefit of the complex task of landmark detection and Cobb angle evaluation, which can provide helpful navigation information about the early diagnosis of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Likz完成签到,获得积分10
7秒前
不安的秋白完成签到,获得积分10
9秒前
清新的剑心完成签到 ,获得积分10
10秒前
Yiling完成签到,获得积分10
10秒前
12秒前
氕氘氚完成签到 ,获得积分10
16秒前
Hello应助不安的秋白采纳,获得10
18秒前
糯米团的完成签到 ,获得积分10
19秒前
神勇从波完成签到 ,获得积分10
21秒前
yellow完成签到 ,获得积分10
23秒前
虚幻元风完成签到 ,获得积分10
26秒前
xybjt完成签到 ,获得积分10
29秒前
巴达天使完成签到,获得积分10
35秒前
江三村完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
53秒前
CyberHamster完成签到,获得积分10
1分钟前
xiaohong完成签到,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
1分钟前
zmuzhang2019发布了新的文献求助10
1分钟前
onestepcloser完成签到 ,获得积分0
1分钟前
zoe完成签到 ,获得积分10
1分钟前
发嗲的慕蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
2分钟前
zzzz完成签到,获得积分20
2分钟前
GEZIKU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022