清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

W‐Transformer: Accurate Cobb angles estimation by using a transformer‐based hybrid structure

柯布角 脊柱侧凸 科布 地标 变压器 残余物 人工智能 计算机科学 模式识别(心理学) 计算机视觉 数学 医学 算法 工程类 外科 电气工程 生物 电压 遗传学
作者
Yifan Yao,Wenjun Yu,Yongbin Gao,Jiuqing Dong,Qiangqiang Xiao,Bo Huang,Zhicai SHI
出处
期刊:Medical Physics [Wiley]
卷期号:49 (5): 3246-3262 被引量:14
标识
DOI:10.1002/mp.15561
摘要

Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.The aim of this paper is to propose an automatic system for landmark detection and Cobb angle estimation, which can effectively help clinicians diagnose and treat scoliosis.A novel hybrid framework was proposed to measure Cobb angle precisely for clinical diagnosis, which was referred as W-Transformer due to its w-shaped architecture. First, a convolutional neural network of cascade residual blocks as our backbone was designed. Then a transformer was fused to learn the dependency information between spine and landmarks. In addition, a reinforcement branch was designed to improve the overlap of landmarks, and an improved prediction module was proposed to fine-tune the final coordinates of landmarks in Cobb angles estimation. Besides, the public Accurate Automated Spinal Curvature Estimation (AASCE) MICCAI 2019 challenge was served as data set. It supplies 609 manually labeled spine anterior-posterior (AP) X-ray images, each of which contains a total of 68 landmark labels and three Cobb Angles tags.From the perspective of the AASCE MICCAI 2019 challenge, we achieved a lower symmetric mean absolute percentage error (SMAPE) of 8.26% for all Cobb angles and the lowest averaged detection error of 50.89 in terms of landmark detection, compared with many state-of-the-art methods. We also provided the SMAPEs for the Cobb angles of the proximal-thoracic (PT), the main-thoracic (MT), and the thoracic-lumbar (TL) area, which are 5.27%, 14.59%, and 20.97% respectively, however, these data were not covered in most previous studies. Statistical analysis demonstrates that our model has obtained a high level of Pearson correlation coefficient of 0.9398 ( p<0.001$p<0.001$ ), which shows excellent reliability of our model. Our model can yield 0.9489 ( p<0.001$p<0.001$ ), 0.8817 ( p<0.001$p<0.001$ ), and 0.9149 ( p<0.001$p<0.001$ ) for PT, MT, and TL, respectively. The overall variability of Cobb angle measurement is less than 4 ∘$^\circ$ , implying clinical value. And the mean absolute deviation (standard deviation) for three regions is 3.64 ∘$^\circ$ (4.13 ∘$^\circ$ ), 3.84 ∘$^\circ$ (4.66 ∘$^\circ$ ), and 3.80 ∘$^\circ$ (4.19 ∘$^\circ$ ). The results of Student paired t$t$ -test indicate that no statistically significant differences are observed between manual measurement and our automatic approach ( p$p$ -value is always >$>$ 0.05). Regarding the diagnosis of scoliosis (Cobb angle >$>$ 10 ∘$^\circ$ ), the proposed method achieves a high sensitivity of 0.9577 and a specificity of 0.8475 for all spinal regions.This study offers a brand-new automatic approach that is potentially of great benefit of the complex task of landmark detection and Cobb angle evaluation, which can provide helpful navigation information about the early diagnosis of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
1分钟前
上官若男应助走啊走采纳,获得10
1分钟前
金钰贝儿完成签到,获得积分10
1分钟前
GingerF应助云那边的山采纳,获得100
2分钟前
2分钟前
走啊走发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助Cara采纳,获得10
3分钟前
June完成签到,获得积分10
3分钟前
zlx完成签到 ,获得积分10
3分钟前
3分钟前
Milo发布了新的文献求助10
3分钟前
3分钟前
Milo完成签到,获得积分10
3分钟前
Cara发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
shi发布了新的文献求助10
4分钟前
4分钟前
勤恳依霜发布了新的文献求助10
4分钟前
英俊的铭应助勤恳依霜采纳,获得10
5分钟前
shi完成签到 ,获得积分20
5分钟前
方白秋完成签到,获得积分0
5分钟前
大气夜山完成签到 ,获得积分10
5分钟前
张wx_100完成签到,获得积分10
6分钟前
6分钟前
欢喜火车发布了新的文献求助10
6分钟前
7分钟前
欢喜火车完成签到,获得积分20
7分钟前
Cara发布了新的文献求助10
7分钟前
ljl86400完成签到,获得积分10
7分钟前
在水一方应助Cara采纳,获得10
7分钟前
所所应助shi采纳,获得10
8分钟前
8分钟前
shi发布了新的文献求助10
8分钟前
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
8分钟前
852应助科研通管家采纳,获得20
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880583
求助须知:如何正确求助?哪些是违规求助? 4167079
关于积分的说明 12927567
捐赠科研通 3926071
什么是DOI,文献DOI怎么找? 2155013
邀请新用户注册赠送积分活动 1173170
关于科研通互助平台的介绍 1077643