W‐Transformer: Accurate Cobb angles estimation by using a transformer‐based hybrid structure

柯布角 脊柱侧凸 科布 地标 变压器 残余物 人工智能 计算机科学 模式识别(心理学) 计算机视觉 数学 医学 算法 工程类 外科 电气工程 生物 电压 遗传学
作者
Yifan Yao,Wenjun Yu,Yongbin Gao,Jiuqing Dong,Qiangqiang Xiao,Bo Huang,Zhicai SHI
出处
期刊:Medical Physics [Wiley]
卷期号:49 (5): 3246-3262 被引量:14
标识
DOI:10.1002/mp.15561
摘要

Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.The aim of this paper is to propose an automatic system for landmark detection and Cobb angle estimation, which can effectively help clinicians diagnose and treat scoliosis.A novel hybrid framework was proposed to measure Cobb angle precisely for clinical diagnosis, which was referred as W-Transformer due to its w-shaped architecture. First, a convolutional neural network of cascade residual blocks as our backbone was designed. Then a transformer was fused to learn the dependency information between spine and landmarks. In addition, a reinforcement branch was designed to improve the overlap of landmarks, and an improved prediction module was proposed to fine-tune the final coordinates of landmarks in Cobb angles estimation. Besides, the public Accurate Automated Spinal Curvature Estimation (AASCE) MICCAI 2019 challenge was served as data set. It supplies 609 manually labeled spine anterior-posterior (AP) X-ray images, each of which contains a total of 68 landmark labels and three Cobb Angles tags.From the perspective of the AASCE MICCAI 2019 challenge, we achieved a lower symmetric mean absolute percentage error (SMAPE) of 8.26% for all Cobb angles and the lowest averaged detection error of 50.89 in terms of landmark detection, compared with many state-of-the-art methods. We also provided the SMAPEs for the Cobb angles of the proximal-thoracic (PT), the main-thoracic (MT), and the thoracic-lumbar (TL) area, which are 5.27%, 14.59%, and 20.97% respectively, however, these data were not covered in most previous studies. Statistical analysis demonstrates that our model has obtained a high level of Pearson correlation coefficient of 0.9398 ( p<0.001$p<0.001$ ), which shows excellent reliability of our model. Our model can yield 0.9489 ( p<0.001$p<0.001$ ), 0.8817 ( p<0.001$p<0.001$ ), and 0.9149 ( p<0.001$p<0.001$ ) for PT, MT, and TL, respectively. The overall variability of Cobb angle measurement is less than 4 ∘$^\circ$ , implying clinical value. And the mean absolute deviation (standard deviation) for three regions is 3.64 ∘$^\circ$ (4.13 ∘$^\circ$ ), 3.84 ∘$^\circ$ (4.66 ∘$^\circ$ ), and 3.80 ∘$^\circ$ (4.19 ∘$^\circ$ ). The results of Student paired t$t$ -test indicate that no statistically significant differences are observed between manual measurement and our automatic approach ( p$p$ -value is always >$>$ 0.05). Regarding the diagnosis of scoliosis (Cobb angle >$>$ 10 ∘$^\circ$ ), the proposed method achieves a high sensitivity of 0.9577 and a specificity of 0.8475 for all spinal regions.This study offers a brand-new automatic approach that is potentially of great benefit of the complex task of landmark detection and Cobb angle evaluation, which can provide helpful navigation information about the early diagnosis of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定路人发布了新的文献求助10
1秒前
张宁波完成签到,获得积分0
2秒前
sue完成签到,获得积分10
3秒前
4秒前
慕青应助害羞的山柏采纳,获得10
5秒前
平常的可乐完成签到 ,获得积分10
7秒前
深情安青应助momo采纳,获得10
8秒前
852应助王汉韬采纳,获得10
8秒前
Anmaterchem1完成签到,获得积分10
9秒前
潘善若发布了新的文献求助10
9秒前
西西完成签到,获得积分10
12秒前
乐乐应助潘善若采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
小小完成签到,获得积分10
15秒前
西瓜汁完成签到,获得积分10
16秒前
向日葵完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
18秒前
19秒前
王汉韬发布了新的文献求助10
20秒前
20秒前
22秒前
鸢也完成签到,获得积分10
22秒前
23秒前
110发布了新的文献求助10
24秒前
25秒前
露露发布了新的文献求助10
25秒前
坚定路人完成签到,获得积分10
26秒前
潘善若发布了新的文献求助10
27秒前
SciGPT应助沈清酌采纳,获得10
28秒前
29秒前
29秒前
30秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158