亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-stage method based on triplet margin loss for pig face recognition

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 面部识别系统 面子(社会学概念) 阶段(地层学) 提取器 特征(语言学) 边距(机器学习) 深度学习 机器学习 工程类 生物 哲学 社会学 古生物学 语言学 社会科学 工艺工程
作者
Zhenyao Wang,Tonghai Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106737-106737 被引量:16
标识
DOI:10.1016/j.compag.2022.106737
摘要

In recent years, as the scale of breeding farms has become increasingly larger, to improve animal welfare and increase farm output, an increasing number of farms have proposed the idea of precision feeding for individual animals. Therefore, how to accurately identify a single animal individually and provide a targeted breeding program for it has become the focus. We have designed and evaluated a lightweight pig face recognition model based on a deep convolutional neural network algorithm, which can achieve a high pig face recognition rate in complex environments. This is a two-stage convolutional neural network model. The first stage is responsible for pig face detection. Based on the EfficientDet-D0 model, we show an improved average precision for pig face detection from 90.7% to 99.1% by employing a dataset sampling technique. The second stage is responsible for pig face classification, using six classification models, including ResNet-18, ResNet-34, DenseNet-121, Inception-v3, AlexNet, and VGGNet-19, as the backbone and proposes an improved method based on the triplet margin loss function. To strengthen the network performance, the multitask learning method enables the network to effectively cluster the features of the feature extractor layer. Then, the k-nearest neighbor algorithm is used to replace the fully connected layer with a large number of parameters to classify the features. These improved models have a maximum classification accuracy of 96.8% for 28 pigs. The parameters of these improved models are reduced to 4.32% of the original at most. Finally, the two-stage model including EfficientDet-d0 and DenseNet 121 has a mean average precision value of 91.35% for face recognition of 28 pigs. Compared with the EfficientDet-d0 network trained by the one-stage method, the mean average precision value is improved by 28%. In addition, we reorganized the original dataset and performed 10-fold cross-validation, and the mAP value was 94.04%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助didi采纳,获得30
39秒前
44秒前
yoona发布了新的文献求助10
49秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
田様应助异次元的玫瑰采纳,获得10
1分钟前
1分钟前
1分钟前
英勇的醉蝶完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
3分钟前
didi发布了新的文献求助30
3分钟前
3分钟前
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
3分钟前
Jasper应助抹茶冰淇淋采纳,获得10
4分钟前
4分钟前
yoona发布了新的文献求助10
4分钟前
gszy1975发布了新的文献求助30
5分钟前
异次元的玫瑰关注了科研通微信公众号
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
thanhmanhp完成签到,获得积分10
5分钟前
玛琳卡迪马完成签到,获得积分10
6分钟前
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
RED发布了新的文献求助10
7分钟前
异次元的玫瑰完成签到,获得积分10
7分钟前
Omni发布了新的文献求助10
8分钟前
8分钟前
8分钟前
小二郎应助科研通管家采纳,获得10
9分钟前
9分钟前
大鱼子完成签到 ,获得积分10
10分钟前
烟花应助大鱼子采纳,获得10
10分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491365
求助须知:如何正确求助?哪些是违规求助? 3077940
关于积分的说明 9151260
捐赠科研通 2770512
什么是DOI,文献DOI怎么找? 1520516
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298