Two-stage method based on triplet margin loss for pig face recognition

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 面部识别系统 面子(社会学概念) 阶段(地层学) 提取器 特征(语言学) 边距(机器学习) 深度学习 机器学习 工程类 生物 哲学 社会学 古生物学 语言学 社会科学 工艺工程
作者
Zhenyao Wang,Tonghai Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106737-106737 被引量:46
标识
DOI:10.1016/j.compag.2022.106737
摘要

In recent years, as the scale of breeding farms has become increasingly larger, to improve animal welfare and increase farm output, an increasing number of farms have proposed the idea of precision feeding for individual animals. Therefore, how to accurately identify a single animal individually and provide a targeted breeding program for it has become the focus. We have designed and evaluated a lightweight pig face recognition model based on a deep convolutional neural network algorithm, which can achieve a high pig face recognition rate in complex environments. This is a two-stage convolutional neural network model. The first stage is responsible for pig face detection. Based on the EfficientDet-D0 model, we show an improved average precision for pig face detection from 90.7% to 99.1% by employing a dataset sampling technique. The second stage is responsible for pig face classification, using six classification models, including ResNet-18, ResNet-34, DenseNet-121, Inception-v3, AlexNet, and VGGNet-19, as the backbone and proposes an improved method based on the triplet margin loss function. To strengthen the network performance, the multitask learning method enables the network to effectively cluster the features of the feature extractor layer. Then, the k-nearest neighbor algorithm is used to replace the fully connected layer with a large number of parameters to classify the features. These improved models have a maximum classification accuracy of 96.8% for 28 pigs. The parameters of these improved models are reduced to 4.32% of the original at most. Finally, the two-stage model including EfficientDet-d0 and DenseNet 121 has a mean average precision value of 91.35% for face recognition of 28 pigs. Compared with the EfficientDet-d0 network trained by the one-stage method, the mean average precision value is improved by 28%. In addition, we reorganized the original dataset and performed 10-fold cross-validation, and the mAP value was 94.04%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到,获得积分10
1秒前
azure发布了新的文献求助10
2秒前
丘比特应助Viv采纳,获得10
5秒前
6秒前
害羞大白菜完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
CipherSage应助Capybara采纳,获得10
14秒前
哪吒大闹小布丁完成签到,获得积分10
14秒前
LKSkywalker完成签到,获得积分10
16秒前
Hello应助欢呼山雁采纳,获得10
17秒前
小马甲应助超级清涟采纳,获得10
18秒前
布丁大师完成签到,获得积分10
18秒前
fly圈圈呀完成签到,获得积分10
24秒前
Kkxx发布了新的文献求助10
24秒前
25秒前
Kirin完成签到,获得积分10
26秒前
Capybara完成签到,获得积分10
26秒前
朴素的易槐完成签到 ,获得积分10
27秒前
28秒前
30秒前
31秒前
32秒前
豆豆发布了新的文献求助10
34秒前
欢呼山雁发布了新的文献求助10
35秒前
要努力搞科研啦完成签到,获得积分20
36秒前
gxc完成签到,获得积分20
42秒前
caramel完成签到,获得积分20
46秒前
晚风完成签到,获得积分10
49秒前
搜集达人应助eureka采纳,获得10
50秒前
51秒前
长生完成签到,获得积分10
52秒前
YaoZhang完成签到 ,获得积分10
53秒前
海贼王的男人完成签到 ,获得积分10
54秒前
lgl发布了新的文献求助10
55秒前
55秒前
明明发布了新的文献求助10
59秒前
完美世界应助LCFXR采纳,获得10
1分钟前
555完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578