Logistics-involved service composition in a dynamic cloud manufacturing environment: A DDPG-based approach

云制造 服务组合 适应性 云计算 服务质量 稳健性(进化) 分布式计算 蚁群优化算法 计算机科学 数学优化 人工智能 数学 计算机网络 化学 操作系统 生物 基因 生物化学 生态学
作者
Yongkui Liu,Huagang Liang,Yingying Xiao,Haifeng Zhang,Jingxin Zhang,Linlin Zhang,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:76: 102323-102323 被引量:14
标识
DOI:10.1016/j.rcim.2022.102323
摘要

Service composition as an important technique for combining multiple services to construct a value-added service is a major research issue in cloud manufacturing. Highly dynamic environments present great challenges to cloud manufacturing service composition (CMfg-SC). Most of previous studies employ heuristic algorithms to solve service composition issues in cloud manufacturing, which, however, are designed for specific problems and lack adaptability necessary to dynamic environment. Hence, CMfg-SC calls for new adaptive approaches. Recent advances in deep reinforcement learning (DRL) provide a new means for solving this issue. Based on DRL, we propose a Deep Deterministic Policy Gradient (DDPG)-based service composition approach to cloud manufacturing, with which optimal service composition solutions can be learned through repeated training. Performance of DDPG in solving CMfg-SC in both static and dynamic environments is examined. Results obtained with another DRL algorithm - Deep Q-Networks (DQN) and the traditional Ant Colony Optimization (ACO) are also presented. Comparison indicates that DDPG has better adaptability, robustness, and extensibility to dynamic environments than ACO, although ACO converges faster and its steady QoS value of the service composition solution is higher than that of DDPG by 0.997%. DDPG outperforms DQN in convergence speed and stability, and the QoS value of the service composition solution of DDPG is higher than that of DQN by 3.249%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
wwww0wwww应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
蹦蹦完成签到,获得积分20
1秒前
田様应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Overlord发布了新的文献求助10
2秒前
2秒前
科研通AI5应助欢喜的芒果采纳,获得10
2秒前
2秒前
彭于晏应助清脆夏岚采纳,获得10
2秒前
2秒前
鱼小鱼给鱼小鱼的求助进行了留言
3秒前
3秒前
3秒前
3秒前
整齐的翠萱完成签到,获得积分10
4秒前
4秒前
5秒前
ZYN完成签到,获得积分10
6秒前
6秒前
玉灵子发布了新的文献求助10
6秒前
痴痴的噜完成签到,获得积分10
7秒前
栗子发布了新的文献求助30
7秒前
陌鸢完成签到,获得积分10
7秒前
科研通AI5应助77采纳,获得10
7秒前
小郭发布了新的文献求助20
8秒前
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488497
求助须知:如何正确求助?哪些是违规求助? 3076158
关于积分的说明 9143934
捐赠科研通 2768523
什么是DOI,文献DOI怎么找? 1519179
邀请新用户注册赠送积分活动 703643
科研通“疑难数据库(出版商)”最低求助积分说明 701932