清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sintering mechanism of size-controllable Cu-Ag core–shell nanoparticles for flexible conductive film with high conductivity, antioxidation, and electrochemical migration resistance

材料科学 烧结 纳米颗粒 复合材料 柔性电子器件 生物电子学 纳米技术 电导率 电阻率和电导率 接触电阻 导电体 弯曲半径 氧化物 冶金 弯曲 电气工程 物理化学 工程类 生物传感器 化学 图层(电子)
作者
Wenwu Zhang,Yan-Hong Zhou,Yiping Ding,Linlin Song,Qunhui Yuan,Weiwei Zhao,Cheng‐Yan Xu,Jun Wei,Mingyu Li,Hongjun Ji
出处
期刊:Applied Surface Science [Elsevier]
卷期号:586: 152691-152691 被引量:30
标识
DOI:10.1016/j.apsusc.2022.152691
摘要

Metallic conductive nanoink with the sensitivity of temperature, oxygen, and electrochemical migration is a great challenge for printed electronics. Here, the size-controllable Cu@Ag core–shell nanoparticles (NPs) conductive films with effective cost, excellent electrical conductivity, high electrochemical migration (ECM) and oxidation resistance were obtained successfully. The novel mechanism of lower temperature sintering for Cu@Ag NPs was proposed due to radius of curvature between a large amount of tiny Ag nanobumps generated by ‘dewetting’ behavior. The Cu@Ag NPs also exhibited extreme ECM and oxidation resistance. It could remain steady in air for 40 days and hardly oxide at a high temperature of 156℃, and its failure time of ECM was 4.6 times higher than that of Ag NPs. Besides, the resistivity was up to 3.21 μΩ∙cm (55% of the bulk conductivity of Cu) even sintered at 140 °C, which enjoyed a great advantage. Ultimately, serial flexible organic light emitting diodes were integrated by high precision inkjet printing, and their excellent bending resistance and printable performance were fully exhibited. Accordingly, integrating the advantages of controllable nanoscale, lower temperature sintering, optimized conductivity, high antioxidation, excellent ECM resistance, flexibility, and printability, we enlighten the practical applications of flexible printed electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助一个小胖子采纳,获得10
12秒前
完美书易完成签到 ,获得积分10
18秒前
22秒前
22秒前
氟锑酸完成签到 ,获得积分10
22秒前
科科通通完成签到,获得积分10
23秒前
YifanWang应助一个小胖子采纳,获得10
28秒前
jasmine完成签到,获得积分10
29秒前
小丸子发布了新的文献求助10
35秒前
XX2完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
35秒前
科研通AI6应助小丸子采纳,获得50
45秒前
一个小胖子完成签到,获得积分10
46秒前
brown完成签到,获得积分10
49秒前
风铃完成签到,获得积分20
50秒前
LL完成签到,获得积分10
51秒前
2903827997完成签到,获得积分10
1分钟前
飞翔的霸天哥应助风铃采纳,获得30
1分钟前
Michael完成签到 ,获得积分10
1分钟前
1323834289完成签到,获得积分10
1分钟前
XX完成签到,获得积分10
1分钟前
FMHChan完成签到,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
1分钟前
无言发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分10
1分钟前
1分钟前
真的OK完成签到,获得积分0
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
kkscanl完成签到 ,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438700
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221061
捐赠科研通 4470786
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417473