Fault enhancement comparison among coherence enhancement, probabilistic neural networks, and convolutional neural networks in the Taranaki Basin area, New Zealand

卷积神经网络 计算机科学 人工智能 断层(地质) 模式识别(心理学) 故障检测与隔离 连贯性(哲学赌博策略) 深度学习 人工神经网络 地震学 地质学 数学 统计 执行机构
作者
Jose Pedro Mora,Heather Bedle,Kurt J. Marfurt
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (3): SE1-SE19 被引量:1
标识
DOI:10.1190/int-2021-0151.1
摘要

Fault identification is a critical component of seismic interpretation. During the past 25 years, coherence, curvature, and other seismic attributes sensitive to faults improved seismic interpretation, but human interaction is still required to generate a complete fault interpretation. Today, image enhancement of fault-sensitive attributes, multiattribute fault analysis using shallow learning, and deep-learning algorithms based on extensive training and convolutional neural networks (CNNs) are promising fault interpretation workflows. We have compared three workflows to test fault-detection capabilities; these include image enhancement, probabilistic neural networks (PNNs), and CNNs. We compared results to human-interpreted faults as our ground truth for a merged 3D seismic survey acquired in the Taranaki Basin, New Zealand. We extracted fault surfaces from the results of the workflows using them as seed points for an active contour method. Extracted faults are then compared to the human-interpreted surface using the Hausdorff distance. Data conditioning, including spectral balancing and structure-oriented filtering, improved the performance of all three workflows. Although all three approaches produce enhanced fault volumes, we find differences in fault location and different artifacts (mispredicted faults). Because all three methods exhibit “false positive” predictions, the enhanced multispectral coherence method produces faults and stratigraphic edges in the final image, including residual stair-step artifacts. In our implementation, PNN produces many salt-and-pepper artifacts through the resulting image, suggesting that we might need to include better training data or reduce the volume size to reduce the number of relevant classes to obtain an improved classification. The CNN algorithm is trained with synthetic data that provide rapid results, correctly identifying larger faults, but missing smaller faults and, in some cases, misclassifying mass-transport deposits and angular unconformities as being faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助自然乌龟采纳,获得10
刚刚
巴斯光年完成签到,获得积分20
1秒前
1秒前
鳗鱼灵寒完成签到,获得积分10
2秒前
2秒前
ting5260完成签到,获得积分10
3秒前
yao完成签到,获得积分10
3秒前
!!完成签到,获得积分10
3秒前
neeeru完成签到,获得积分10
3秒前
4秒前
4秒前
丘比特应助大大怪采纳,获得10
4秒前
yydsyk完成签到,获得积分10
4秒前
YixiaoWang发布了新的文献求助10
5秒前
小刷子完成签到,获得积分10
5秒前
Aom发布了新的文献求助20
6秒前
可宝想当富婆完成签到 ,获得积分10
6秒前
火星上的天思完成签到,获得积分10
6秒前
6秒前
LIN完成签到,获得积分10
6秒前
JamesPei应助缓慢易云采纳,获得10
7秒前
CodeCraft应助Laraine采纳,获得10
8秒前
8秒前
卉酱完成签到,获得积分10
8秒前
Kate完成签到,获得积分10
8秒前
林夏发布了新的文献求助10
8秒前
小思雅发布了新的文献求助10
8秒前
ZJCGD发布了新的文献求助10
9秒前
踹脸大妈完成签到,获得积分10
9秒前
佳仪完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
Akim应助哎呀呀采纳,获得10
12秒前
sljzhangbiao11完成签到,获得积分10
13秒前
宋宋关注了科研通微信公众号
13秒前
JamesPei应助12334采纳,获得10
13秒前
13秒前
zzzzz给zzzzz的求助进行了留言
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582