Fault enhancement comparison among coherence enhancement, probabilistic neural networks, and convolutional neural networks in the Taranaki Basin area, New Zealand

卷积神经网络 计算机科学 人工智能 断层(地质) 模式识别(心理学) 故障检测与隔离 连贯性(哲学赌博策略) 深度学习 人工神经网络 地震学 地质学 数学 统计 执行机构
作者
Jose Pedro Mora,Heather Bedle,Kurt J. Marfurt
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (3): SE1-SE19 被引量:1
标识
DOI:10.1190/int-2021-0151.1
摘要

Fault identification is a critical component of seismic interpretation. During the past 25 years, coherence, curvature, and other seismic attributes sensitive to faults improved seismic interpretation, but human interaction is still required to generate a complete fault interpretation. Today, image enhancement of fault-sensitive attributes, multiattribute fault analysis using shallow learning, and deep-learning algorithms based on extensive training and convolutional neural networks (CNNs) are promising fault interpretation workflows. We have compared three workflows to test fault-detection capabilities; these include image enhancement, probabilistic neural networks (PNNs), and CNNs. We compared results to human-interpreted faults as our ground truth for a merged 3D seismic survey acquired in the Taranaki Basin, New Zealand. We extracted fault surfaces from the results of the workflows using them as seed points for an active contour method. Extracted faults are then compared to the human-interpreted surface using the Hausdorff distance. Data conditioning, including spectral balancing and structure-oriented filtering, improved the performance of all three workflows. Although all three approaches produce enhanced fault volumes, we find differences in fault location and different artifacts (mispredicted faults). Because all three methods exhibit “false positive” predictions, the enhanced multispectral coherence method produces faults and stratigraphic edges in the final image, including residual stair-step artifacts. In our implementation, PNN produces many salt-and-pepper artifacts through the resulting image, suggesting that we might need to include better training data or reduce the volume size to reduce the number of relevant classes to obtain an improved classification. The CNN algorithm is trained with synthetic data that provide rapid results, correctly identifying larger faults, but missing smaller faults and, in some cases, misclassifying mass-transport deposits and angular unconformities as being faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美鱼完成签到 ,获得积分10
1秒前
1秒前
vivi完成签到,获得积分10
1秒前
lucky完成签到,获得积分10
2秒前
咯咚完成签到 ,获得积分10
3秒前
5秒前
传奇3应助清脆的士晋采纳,获得10
6秒前
冬天雪山茶完成签到,获得积分10
7秒前
Lvy完成签到,获得积分10
7秒前
8秒前
8秒前
活泼啤酒完成签到 ,获得积分10
8秒前
bird发布了新的文献求助30
9秒前
Owen应助草莓味的AD钙采纳,获得10
13秒前
lxrong发布了新的文献求助10
13秒前
13秒前
azure发布了新的文献求助20
13秒前
澡雪完成签到,获得积分10
14秒前
黄迪迪完成签到 ,获得积分10
14秒前
微笑的铸海完成签到 ,获得积分10
15秒前
LILYpig完成签到 ,获得积分10
16秒前
Hh完成签到,获得积分10
17秒前
Brian发布了新的文献求助30
17秒前
柿子发布了新的文献求助30
19秒前
Ryki应助小阿波采纳,获得10
19秒前
19秒前
21秒前
halosheep完成签到 ,获得积分10
24秒前
26秒前
科研通AI2S应助美好斓采纳,获得10
26秒前
siyuyu完成签到,获得积分10
26秒前
29秒前
尘飞扬应助研友_LOoomL采纳,获得10
30秒前
31秒前
草莓味的AD钙完成签到,获得积分20
33秒前
合适的薯片关注了科研通微信公众号
33秒前
33秒前
沐颜完成签到 ,获得积分10
33秒前
LWJ关闭了LWJ文献求助
34秒前
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269089
求助须知:如何正确求助?哪些是违规求助? 2908669
关于积分的说明 8346295
捐赠科研通 2578818
什么是DOI,文献DOI怎么找? 1402463
科研通“疑难数据库(出版商)”最低求助积分说明 655455
邀请新用户注册赠送积分活动 634602