Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging

医学 核医学 磁共振弥散成像 图像质量 深度学习 人工智能 放射科 磁共振成像 图像(数学) 计算机视觉 计算机科学
作者
Takahiro Ueda,Yoshiharu Ohno,Kaori Yamamoto,Kazuhiro Murayama,Masato Ikedo,Masao Yui,Satomu Hanamatsu,Yumi Tanaka,Yuki Obama,Hirotaka Ikeda,Hiroshi Toyama
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (2): 373-381 被引量:102
标识
DOI:10.1148/radiol.204097
摘要

Background Deep learning reconstruction (DLR) may improve image quality. However, its impact on diffusion-weighted imaging (DWI) of the prostate has yet to be assessed. Purpose To determine whether DLR can improve image quality of diffusion-weighted MRI at b values ranging from 1000 sec/mm2 to 5000 sec/mm2 in patients with prostate cancer. Materials and Methods In this retrospective study, images of the prostate obtained at DWI with a b value of 0 sec/mm2, DWI with a b value of 1000 sec/mm2 (DWI1000), DWI with a b value of 3000 sec/mm2 (DWI3000), and DWI with a b value of 5000 sec/mm2 (DWI5000) from consecutive patients with biopsy-proven cancer from January to June 2020 were reconstructed with and without DLR. Image quality was assessed using signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) from region-of-interest analysis and qualitatively assessed using a five-point visual scoring system (1 [very poor] to 5 [excellent]) for each high-b-value DWI sequence with and without DLR. The SNR, CNR, and visual score for DWI with and without DLR were compared with the paired t test and the Wilcoxon signed rank test with Bonferroni correction, respectively. Apparent diffusion coefficients (ADCs) from DWI with and without DLR were also compared with the paired t test with Bonferroni correction. Results A total of 60 patients (mean age, 67 years; age range, 49–79 years) were analyzed. DWI with DLR showed significantly higher SNRs and CNRs than DWI without DLR (P < .001); for example, with DWI1000 the mean SNR was 38.7 ± 0.6 versus 17.8 ± 0.6, respectively (P < .001), and the mean CNR was 18.4 ± 5.6 versus 7.4 ± 5.6, respectively (P < .001). DWI with DLR also demonstrated higher qualitative image quality than DWI without DLR (mean score: 4.8 ± 0.4 vs 4.0 ± 0.7, respectively, with DWI1000 [P = .001], 3.8 ± 0.7 vs 3.0 ± 0.8 with DWI3000 [P = .002], and 3.1 ± 0.8 vs 2.0 ± 0.9 with DWI5000 [P < .001]). ADCs derived with and without DLR did not differ substantially (P > .99). Conclusion Deep learning reconstruction improves the image quality of diffusion-weighted MRI scans of prostate cancer with no impact on apparent diffusion coefficient quantitation with a 3.0-T MRI system. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Turkbey in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Hielo采纳,获得10
刚刚
浮游应助呆呆采纳,获得10
刚刚
1秒前
2秒前
斯文哈密瓜完成签到,获得积分10
3秒前
3秒前
3秒前
ray发布了新的文献求助10
3秒前
XXXTTT完成签到,获得积分10
3秒前
英俊的铭应助qwer采纳,获得10
4秒前
li发布了新的文献求助10
4秒前
4秒前
Psycho完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
隐形曼青应助ran采纳,获得10
5秒前
上官若男应助内向煎蛋采纳,获得10
6秒前
Akim应助T拐拐采纳,获得10
6秒前
7秒前
aodilee应助邱穗采纳,获得10
7秒前
王大雪发布了新的文献求助30
7秒前
8秒前
朱朱发布了新的文献求助10
9秒前
ktssly发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
Silence完成签到,获得积分0
12秒前
13秒前
Ava应助Jayee采纳,获得10
13秒前
lucky发布了新的文献求助20
13秒前
junjun发布了新的文献求助10
14秒前
李健应助Leon采纳,获得10
14秒前
14秒前
14秒前
14秒前
KON发布了新的文献求助10
14秒前
棉花完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728