Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging

医学 核医学 磁共振弥散成像 图像质量 深度学习 人工智能 放射科 磁共振成像 图像(数学) 计算机视觉 计算机科学
作者
Takahiro Ueda,Yoshiharu Ohno,Kaori Yamamoto,Kazuhiro Murayama,Masato Ikedo,Masao Yui,Satomu Hanamatsu,Yumi Tanaka,Yuki Obama,Hirotaka Ikeda,Hiroshi Toyama
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (2): 373-381 被引量:102
标识
DOI:10.1148/radiol.204097
摘要

Background Deep learning reconstruction (DLR) may improve image quality. However, its impact on diffusion-weighted imaging (DWI) of the prostate has yet to be assessed. Purpose To determine whether DLR can improve image quality of diffusion-weighted MRI at b values ranging from 1000 sec/mm2 to 5000 sec/mm2 in patients with prostate cancer. Materials and Methods In this retrospective study, images of the prostate obtained at DWI with a b value of 0 sec/mm2, DWI with a b value of 1000 sec/mm2 (DWI1000), DWI with a b value of 3000 sec/mm2 (DWI3000), and DWI with a b value of 5000 sec/mm2 (DWI5000) from consecutive patients with biopsy-proven cancer from January to June 2020 were reconstructed with and without DLR. Image quality was assessed using signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) from region-of-interest analysis and qualitatively assessed using a five-point visual scoring system (1 [very poor] to 5 [excellent]) for each high-b-value DWI sequence with and without DLR. The SNR, CNR, and visual score for DWI with and without DLR were compared with the paired t test and the Wilcoxon signed rank test with Bonferroni correction, respectively. Apparent diffusion coefficients (ADCs) from DWI with and without DLR were also compared with the paired t test with Bonferroni correction. Results A total of 60 patients (mean age, 67 years; age range, 49–79 years) were analyzed. DWI with DLR showed significantly higher SNRs and CNRs than DWI without DLR (P < .001); for example, with DWI1000 the mean SNR was 38.7 ± 0.6 versus 17.8 ± 0.6, respectively (P < .001), and the mean CNR was 18.4 ± 5.6 versus 7.4 ± 5.6, respectively (P < .001). DWI with DLR also demonstrated higher qualitative image quality than DWI without DLR (mean score: 4.8 ± 0.4 vs 4.0 ± 0.7, respectively, with DWI1000 [P = .001], 3.8 ± 0.7 vs 3.0 ± 0.8 with DWI3000 [P = .002], and 3.1 ± 0.8 vs 2.0 ± 0.9 with DWI5000 [P < .001]). ADCs derived with and without DLR did not differ substantially (P > .99). Conclusion Deep learning reconstruction improves the image quality of diffusion-weighted MRI scans of prostate cancer with no impact on apparent diffusion coefficient quantitation with a 3.0-T MRI system. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Turkbey in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小明完成签到 ,获得积分10
9秒前
kuyi完成签到 ,获得积分10
12秒前
火星上誉完成签到 ,获得积分10
14秒前
昏迷树袋熊完成签到 ,获得积分10
21秒前
飘逸锦程完成签到 ,获得积分10
22秒前
23秒前
31秒前
不甜的唐发布了新的文献求助10
35秒前
yuyu877完成签到 ,获得积分10
35秒前
李雨涵发布了新的文献求助10
40秒前
hb完成签到,获得积分10
40秒前
研友_VZG7GZ应助动听的雁枫采纳,获得10
46秒前
46秒前
自觉安荷完成签到 ,获得积分10
47秒前
糖糖完成签到 ,获得积分10
48秒前
53秒前
微雨若,,完成签到 ,获得积分10
55秒前
lzw123456完成签到,获得积分10
58秒前
59秒前
dejavu完成签到,获得积分10
1分钟前
WenJun完成签到,获得积分10
1分钟前
one发布了新的文献求助10
1分钟前
xianyaoz完成签到 ,获得积分10
1分钟前
C2完成签到 ,获得积分10
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
one完成签到,获得积分10
1分钟前
既然寄了,那就开摆完成签到 ,获得积分10
1分钟前
小于完成签到 ,获得积分10
1分钟前
lzw123456发布了新的文献求助10
1分钟前
柳树完成签到,获得积分10
1分钟前
DAYDAY完成签到 ,获得积分10
1分钟前
麦当劳信徒完成签到,获得积分10
1分钟前
不甜的唐发布了新的文献求助10
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
小young完成签到 ,获得积分10
1分钟前
77完成签到,获得积分10
1分钟前
CY完成签到,获得积分10
1分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
haochi完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281665
求助须知:如何正确求助?哪些是违规求助? 4435953
关于积分的说明 13806865
捐赠科研通 4316234
什么是DOI,文献DOI怎么找? 2369210
邀请新用户注册赠送积分活动 1364528
关于科研通互助平台的介绍 1328018