医学
邦费罗尼校正
威尔科克森符号秩检验
核医学
前列腺癌
磁共振弥散成像
图像质量
有效扩散系数
人工智能
放射科
磁共振成像
图像(数学)
癌症
曼惠特尼U检验
数学
统计
内科学
计算机科学
作者
Takahiro Ueda,Yoshiharu Ohno,Kaori Yamamoto,Kazuhiro Murayama,Masato Ikedo,Masao Yui,Satomu Hanamatsu,Yumi Tanaka,Yuki Obama,Hirotaka Ikeda,Hiroshi Toyama
出处
期刊:Radiology
[Radiological Society of North America]
日期:2022-05-01
卷期号:303 (2): 373-381
被引量:78
标识
DOI:10.1148/radiol.204097
摘要
Background Deep learning reconstruction (DLR) may improve image quality. However, its impact on diffusion-weighted imaging (DWI) of the prostate has yet to be assessed. Purpose To determine whether DLR can improve image quality of diffusion-weighted MRI at b values ranging from 1000 sec/mm2 to 5000 sec/mm2 in patients with prostate cancer. Materials and Methods In this retrospective study, images of the prostate obtained at DWI with a b value of 0 sec/mm2, DWI with a b value of 1000 sec/mm2 (DWI1000), DWI with a b value of 3000 sec/mm2 (DWI3000), and DWI with a b value of 5000 sec/mm2 (DWI5000) from consecutive patients with biopsy-proven cancer from January to June 2020 were reconstructed with and without DLR. Image quality was assessed using signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) from region-of-interest analysis and qualitatively assessed using a five-point visual scoring system (1 [very poor] to 5 [excellent]) for each high-b-value DWI sequence with and without DLR. The SNR, CNR, and visual score for DWI with and without DLR were compared with the paired t test and the Wilcoxon signed rank test with Bonferroni correction, respectively. Apparent diffusion coefficients (ADCs) from DWI with and without DLR were also compared with the paired t test with Bonferroni correction. Results A total of 60 patients (mean age, 67 years; age range, 49-79 years) were analyzed. DWI with DLR showed significantly higher SNRs and CNRs than DWI without DLR (P < .001); for example, with DWI1000 the mean SNR was 38.7 ± 0.6 versus 17.8 ± 0.6, respectively (P < .001), and the mean CNR was 18.4 ± 5.6 versus 7.4 ± 5.6, respectively (P < .001). DWI with DLR also demonstrated higher qualitative image quality than DWI without DLR (mean score: 4.8 ± 0.4 vs 4.0 ± 0.7, respectively, with DWI1000 [P = .001], 3.8 ± 0.7 vs 3.0 ± 0.8 with DWI3000 [P = .002], and 3.1 ± 0.8 vs 2.0 ± 0.9 with DWI5000 [P < .001]). ADCs derived with and without DLR did not differ substantially (P > .99). Conclusion Deep learning reconstruction improves the image quality of diffusion-weighted MRI scans of prostate cancer with no impact on apparent diffusion coefficient quantitation with a 3.0-T MRI system. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Turkbey in this issue.
科研通智能强力驱动
Strongly Powered by AbleSci AI