Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging

医学 核医学 磁共振弥散成像 图像质量 深度学习 人工智能 放射科 磁共振成像 图像(数学) 计算机视觉 计算机科学
作者
Takahiro Ueda,Yoshiharu Ohno,Kaori Yamamoto,Kazuhiro Murayama,Masato Ikedo,Masao Yui,Satomu Hanamatsu,Yumi Tanaka,Yuki Obama,Hirotaka Ikeda,Hiroshi Toyama
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (2): 373-381 被引量:87
标识
DOI:10.1148/radiol.204097
摘要

Background Deep learning reconstruction (DLR) may improve image quality. However, its impact on diffusion-weighted imaging (DWI) of the prostate has yet to be assessed. Purpose To determine whether DLR can improve image quality of diffusion-weighted MRI at b values ranging from 1000 sec/mm2 to 5000 sec/mm2 in patients with prostate cancer. Materials and Methods In this retrospective study, images of the prostate obtained at DWI with a b value of 0 sec/mm2, DWI with a b value of 1000 sec/mm2 (DWI1000), DWI with a b value of 3000 sec/mm2 (DWI3000), and DWI with a b value of 5000 sec/mm2 (DWI5000) from consecutive patients with biopsy-proven cancer from January to June 2020 were reconstructed with and without DLR. Image quality was assessed using signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) from region-of-interest analysis and qualitatively assessed using a five-point visual scoring system (1 [very poor] to 5 [excellent]) for each high-b-value DWI sequence with and without DLR. The SNR, CNR, and visual score for DWI with and without DLR were compared with the paired t test and the Wilcoxon signed rank test with Bonferroni correction, respectively. Apparent diffusion coefficients (ADCs) from DWI with and without DLR were also compared with the paired t test with Bonferroni correction. Results A total of 60 patients (mean age, 67 years; age range, 49–79 years) were analyzed. DWI with DLR showed significantly higher SNRs and CNRs than DWI without DLR (P < .001); for example, with DWI1000 the mean SNR was 38.7 ± 0.6 versus 17.8 ± 0.6, respectively (P < .001), and the mean CNR was 18.4 ± 5.6 versus 7.4 ± 5.6, respectively (P < .001). DWI with DLR also demonstrated higher qualitative image quality than DWI without DLR (mean score: 4.8 ± 0.4 vs 4.0 ± 0.7, respectively, with DWI1000 [P = .001], 3.8 ± 0.7 vs 3.0 ± 0.8 with DWI3000 [P = .002], and 3.1 ± 0.8 vs 2.0 ± 0.9 with DWI5000 [P < .001]). ADCs derived with and without DLR did not differ substantially (P > .99). Conclusion Deep learning reconstruction improves the image quality of diffusion-weighted MRI scans of prostate cancer with no impact on apparent diffusion coefficient quantitation with a 3.0-T MRI system. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Turkbey in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘怀蕊完成签到,获得积分10
1秒前
1秒前
LLL发布了新的文献求助10
1秒前
跳跃乘风完成签到,获得积分10
2秒前
Anxinxin完成签到,获得积分10
2秒前
阳佟冬卉完成签到,获得积分10
3秒前
Silence发布了新的文献求助10
3秒前
3秒前
通通通发布了新的文献求助10
4秒前
帅气的秘密完成签到 ,获得积分10
4秒前
领导范儿应助马建国采纳,获得10
4秒前
lysixsixsix完成签到,获得积分10
4秒前
5秒前
jia完成签到,获得积分10
5秒前
欣喜乐天发布了新的文献求助10
5秒前
Kiyotaka完成签到,获得积分10
5秒前
6秒前
季夏发布了新的文献求助10
6秒前
Tingshan发布了新的文献求助20
7秒前
背后的诺言完成签到 ,获得积分20
7秒前
GHOST完成签到,获得积分20
8秒前
8秒前
勤奋的蜗牛完成签到,获得积分20
8秒前
omo发布了新的文献求助10
8秒前
Akim应助糊糊采纳,获得10
9秒前
Zn应助dsjlove采纳,获得10
9秒前
月球宇航员完成签到,获得积分10
9秒前
9秒前
英姑应助亲爱的安德烈采纳,获得10
11秒前
今后应助workwork采纳,获得10
11秒前
11秒前
落后翠柏发布了新的文献求助10
11秒前
淡然凝丹完成签到,获得积分10
11秒前
Y_Jfeng完成签到,获得积分10
12秒前
潼熙甄完成签到 ,获得积分10
13秒前
Lucas应助糖糖采纳,获得10
13秒前
wyblobin发布了新的文献求助10
13秒前
星辰大海应助叶飞荷采纳,获得10
13秒前
wanmiao12完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762