清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chaoqun Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:264: 107530-107530 被引量:49
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶肥肠完成签到 ,获得积分10
13秒前
在阳光下完成签到 ,获得积分10
53秒前
bruna发布了新的文献求助10
53秒前
1分钟前
1分钟前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
紫熊发布了新的文献求助10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
2分钟前
2分钟前
3分钟前
就是我发布了新的文献求助10
3分钟前
liuzhigang完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
爱静静举报孔明不在空城求助涉嫌违规
4分钟前
善学以致用应助无限语海采纳,获得10
4分钟前
5分钟前
Tttttttt完成签到,获得积分10
5分钟前
fighting发布了新的文献求助10
5分钟前
就是我完成签到,获得积分10
5分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
6分钟前
无限语海发布了新的文献求助10
6分钟前
7分钟前
无限语海完成签到,获得积分10
7分钟前
7分钟前
春日迟迟2012完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
紫熊发布了新的文献求助10
8分钟前
9分钟前
9分钟前
紫熊完成签到,获得积分10
9分钟前
Malmever完成签到,获得积分10
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150617
求助须知:如何正确求助?哪些是违规求助? 2802025
关于积分的说明 7846089
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628708
版权声明 601757