Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chenwei Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:264: 107530-107530 被引量:141
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
小燕子发布了新的文献求助10
2秒前
2秒前
漾漾完成签到,获得积分10
5秒前
uniphoton完成签到,获得积分10
5秒前
研友_VZG7GZ应助Gleast采纳,获得10
5秒前
脑洞疼应助平淡的忆之采纳,获得10
6秒前
hahahahaha完成签到,获得积分10
7秒前
浮浮世世完成签到,获得积分10
7秒前
8秒前
奋斗的友儿完成签到,获得积分10
9秒前
科研通AI6应助autism采纳,获得10
9秒前
杀破狼发布了新的文献求助10
10秒前
现代半山完成签到 ,获得积分10
11秒前
11秒前
八九完成签到 ,获得积分10
12秒前
Yang应助大观天下采纳,获得10
12秒前
13秒前
万能图书馆应助Mortimer采纳,获得10
14秒前
安嫔完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
BAEssss发布了新的文献求助10
16秒前
17秒前
kirazou完成签到,获得积分10
18秒前
Sitara发布了新的文献求助10
19秒前
19秒前
赘婿应助刘xiang采纳,获得10
19秒前
20秒前
玮玮发布了新的文献求助10
20秒前
科研通AI6应助one采纳,获得10
20秒前
21秒前
丘比特应助杀破狼采纳,获得10
21秒前
喵喵666完成签到,获得积分10
21秒前
21秒前
22秒前
尹妮妮完成签到,获得积分10
22秒前
juzitinghai完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499066
求助须知:如何正确求助?哪些是违规求助? 4596051
关于积分的说明 14451981
捐赠科研通 4529162
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465842
关于科研通互助平台的介绍 1438777