Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chaoqun Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:264: 107530-107530 被引量:49
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助波波玛奇朵采纳,获得10
1秒前
戏言121完成签到,获得积分10
1秒前
迷人的映雁完成签到,获得积分10
2秒前
2秒前
美丽的之双完成签到,获得积分10
3秒前
阿会完成签到,获得积分10
3秒前
wqm完成签到,获得积分10
4秒前
戏言121发布了新的文献求助10
5秒前
5秒前
6秒前
优雅的流沙完成签到 ,获得积分10
7秒前
猫的海完成签到,获得积分10
7秒前
7秒前
Eason Liu完成签到,获得积分0
8秒前
Wendy1204完成签到,获得积分20
8秒前
Hello应助654采纳,获得10
8秒前
咩咩羊完成签到,获得积分10
8秒前
12秒前
lianqing完成签到,获得积分10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
hh应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得30
13秒前
13秒前
Leif应助科研通管家采纳,获得20
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
忘羡222发布了新的文献求助20
16秒前
丰富猕猴桃完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824