Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chenwei Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:264: 107530-107530 被引量:92
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kryptonite发布了新的文献求助10
1秒前
1秒前
干净又晴发布了新的文献求助10
1秒前
2秒前
独特的翠芙完成签到,获得积分10
3秒前
飞儿随缘完成签到,获得积分10
3秒前
3秒前
3秒前
科研小倪完成签到,获得积分20
3秒前
jjj完成签到,获得积分10
3秒前
3秒前
wasfey发布了新的文献求助10
4秒前
4秒前
4秒前
Carrie完成签到,获得积分10
4秒前
爆米花应助XHT采纳,获得10
5秒前
Sophia完成签到,获得积分10
5秒前
6秒前
luogan完成签到,获得积分10
6秒前
夕夕口口应助端庄的学姐采纳,获得10
6秒前
6秒前
22222发布了新的文献求助30
6秒前
jackwang发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
陈住气发布了新的文献求助10
7秒前
三更发布了新的文献求助10
7秒前
8秒前
欣喜书桃发布了新的文献求助10
8秒前
汤飞柏发布了新的文献求助10
8秒前
卡卡西应助小钱全采纳,获得30
8秒前
赵赵赵发布了新的文献求助10
8秒前
8秒前
dd33完成签到,获得积分10
9秒前
9秒前
1111完成签到,获得积分10
9秒前
归尘发布了新的文献求助10
11秒前
超级的鹅完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060