清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chenwei Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:264: 107530-107530 被引量:92
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
考拉发布了新的文献求助10
6秒前
秋夜临完成签到,获得积分0
26秒前
40秒前
纳米果完成签到,获得积分10
42秒前
hxt_1025发布了新的文献求助10
45秒前
pikelet完成签到,获得积分10
54秒前
赘婿应助pikelet采纳,获得20
57秒前
今后应助科研通管家采纳,获得10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
王新彤完成签到 ,获得积分10
1分钟前
尘远知山静完成签到 ,获得积分10
1分钟前
真实的傲儿完成签到 ,获得积分10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
2分钟前
Lee0923发布了新的文献求助10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
天成浩子完成签到 ,获得积分10
2分钟前
Lee0923完成签到,获得积分10
3分钟前
美好的冰蓝完成签到 ,获得积分10
3分钟前
Beyond095完成签到 ,获得积分10
3分钟前
3分钟前
西山菩提完成签到,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
敏敏9813发布了新的文献求助10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
北国雪未消完成签到 ,获得积分10
3分钟前
刘敦銮完成签到 ,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
云烟完成签到 ,获得积分10
4分钟前
myp完成签到,获得积分10
4分钟前
lql完成签到 ,获得积分10
4分钟前
ywzwszl完成签到,获得积分0
4分钟前
ding应助阳光的丹雪采纳,获得10
4分钟前
dx完成签到,获得积分10
5分钟前
lilylwy完成签到 ,获得积分0
5分钟前
debu9完成签到,获得积分10
5分钟前
英姑应助科研通管家采纳,获得50
5分钟前
懒得理完成签到 ,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5222574
求助须知:如何正确求助?哪些是违规求助? 4395286
关于积分的说明 13681356
捐赠科研通 4258969
什么是DOI,文献DOI怎么找? 2337077
邀请新用户注册赠送积分活动 1334472
关于科研通互助平台的介绍 1289648