亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

多光谱图像 均方误差 精准农业 天蓬 传感器融合 含水量 计算机科学 人工神经网络 遥感 RGB颜色模型 人工智能 随机森林 机器学习 环境科学 数学 统计 工程类 地理 考古 岩土工程 农业
作者
Minghan Cheng,Xiyun Jiao,Yadong Liu,Mingchao Shao,Xun Yu,Yi Bai,Zixu Wang,Siyu Wang,Nuremanguli Tuohuti,Shuaibing Liu,Lei Shi,Dameng Yin,Xiao Huang,Chenwei Nie,Xiuliang Jin
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:264: 107530-107530 被引量:92
标识
DOI:10.1016/j.agwat.2022.107530
摘要

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
konglong完成签到,获得积分10
2秒前
8秒前
li完成签到 ,获得积分10
39秒前
1分钟前
1分钟前
taku完成签到 ,获得积分10
1分钟前
可爱的函函应助hongping采纳,获得10
2分钟前
GPTea举报行xxx求助涉嫌违规
3分钟前
3分钟前
4分钟前
4分钟前
Ryu发布了新的文献求助10
4分钟前
月军完成签到 ,获得积分10
5分钟前
十点差一分完成签到,获得积分10
5分钟前
Nan发布了新的文献求助10
5分钟前
5分钟前
6分钟前
外向的妍发布了新的文献求助20
6分钟前
外向的妍完成签到,获得积分10
7分钟前
7分钟前
Axs完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
hongping发布了新的文献求助10
8分钟前
937forever完成签到 ,获得积分10
8分钟前
小蘑菇应助hongping采纳,获得10
8分钟前
彩虹儿应助科研通管家采纳,获得10
8分钟前
李健应助科研通管家采纳,获得10
8分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
andrew完成签到 ,获得积分10
9分钟前
9分钟前
Sciolto完成签到,获得积分10
9分钟前
Sciolto发布了新的文献求助10
10分钟前
10分钟前
田様应助Sciolto采纳,获得30
10分钟前
10分钟前
海丽完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974262
求助须知:如何正确求助?哪些是违规求助? 4229476
关于积分的说明 13172661
捐赠科研通 4018620
什么是DOI,文献DOI怎么找? 2199003
邀请新用户注册赠送积分活动 1211578
关于科研通互助平台的介绍 1126915