IRUNet for medical image segmentation

计算机科学 分割 人工智能 深度学习 编码器 卷积神经网络 模式识别(心理学) 图像分割 精确性和召回率 计算机视觉 操作系统
作者
Fatemeh Hourali,Hossein Khosravi,Bagher Moradi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116399-116399 被引量:14
标识
DOI:10.1016/j.eswa.2021.116399
摘要

In recent years, deep learning has been widely used to segment medical images and assist physicians in better diagnosis and treatment of diseases. Anthrax is a serious infectious disease that has a worldwide distribution. One of the most important ways to diagnose this disease is the microscopic examination of slides containing tissue samples of patients. The state-of-the-art models for segmentation of the slide images are based on deep neural networks and have encoder-decoder architecture, such as fully convolutional network, UNet, and their variants. Skip connections play a key role in such models. However, in many of these models, the skip connections only aggregate features related to the same scales of the encoder and decoder sections, which degrades the quality of the segmentation. We propose an improved UNet-based architecture to segment microscopic images of patient tissue samples. The proposed model, called IRUNet, takes the advantage of inception and residual blocks in the skip connections and combines multi-scale features in order to extract better features for segmentation. Also, to extract powerful representations in the encoder section, several convolutional networks have been used as the backbone and their effect on the segmentation results has been investigated. The experimental results show that despite many challenges in the field of microscopic image analysis such as high image resolution, different contrasts, image artifacts, object crowding, and overlapping, IRUNet has better performance on medical image segmentation compared to the state-of-the-art models. It achieves the precision of 92.8%, the recall rate of 93%, and the Dice score of 92.9% which are outstanding results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒乌完成签到,获得积分10
1秒前
2秒前
4秒前
6秒前
天真书竹完成签到,获得积分10
9秒前
woshiwuziq发布了新的文献求助10
11秒前
WHX完成签到,获得积分10
16秒前
科研通AI2S应助落寞冬云采纳,获得10
17秒前
17秒前
18秒前
18秒前
月亮端着大碗完成签到 ,获得积分10
19秒前
阿分完成签到,获得积分10
19秒前
evan完成签到 ,获得积分10
20秒前
20秒前
Owen应助LVVVB采纳,获得10
21秒前
石头完成签到,获得积分10
22秒前
23秒前
琳霖临临麟完成签到,获得积分10
24秒前
怡然的小蜜蜂完成签到,获得积分10
25秒前
兰格格完成签到,获得积分10
25秒前
supercy2000发布了新的文献求助10
25秒前
战善完成签到,获得积分10
25秒前
adeno完成签到,获得积分10
25秒前
阿分发布了新的文献求助10
25秒前
科研通AI2S应助岑夜南采纳,获得10
26秒前
现实的玉米完成签到,获得积分10
28秒前
29秒前
li完成签到 ,获得积分10
30秒前
souther完成签到,获得积分0
32秒前
33秒前
天赋丸子完成签到,获得积分10
33秒前
34秒前
赵勇完成签到 ,获得积分10
35秒前
37秒前
zijian完成签到,获得积分10
38秒前
Aurora发布了新的文献求助10
38秒前
晓晓雪发布了新的文献求助10
39秒前
粗暴的海豚完成签到,获得积分10
39秒前
41秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382197
求助须知:如何正确求助?哪些是违规求助? 2996860
关于积分的说明 8770979
捐赠科研通 2682165
什么是DOI,文献DOI怎么找? 1468925
科研通“疑难数据库(出版商)”最低求助积分说明 679177
邀请新用户注册赠送积分活动 671376