反向电渗析
膜
材料科学
化学工程
介孔二氧化硅
离子运输机
能量转换
离子
纳米技术
渗透力
介孔材料
化学
聚砜
选择性
吸附
气体分离
多孔性
电渗析
催化作用
有机化学
正渗透
反渗透
工程类
物理
热力学
生物化学
作者
Shan Zhou,Lei Xie,Xiaofeng Li,Liping Zhang,Qirui Liang,Miao Yan,Jie Zeng,Beilei Qiu,Tianyi Liu,Jinyao Tang,Liping Wen,Lei Jiang,Biao Kong
标识
DOI:10.1002/ange.202110731
摘要
Abstract Nanofluidic devices have been widely used for diode‐like ion transport and salinity gradients energy conversion. Emerging reverse electrodialysis (RED) nanofluidic systems based on nanochannel membrane display great superiority in salinity gradient energy harvesting. However, the imbalance between permeability and selectivity limits their practical application. Here, a new mesoporous carbon‐silica/anodized aluminum (MCS/AAO) nanofluidic device with enhanced permselectivity for temperature‐ and pH‐regulated energy generation was obtained by interfacial super‐assembly method. A maximum power density of 5.04 W m −2 is achieved, and a higher performance can be obtained by regulating temperature and pH. Theoretical calculations are further implemented to reveal the mechanism for ion rectification, ion selectivity and energy conversion. Results show that the MCS/AAO hybrid membrane has great superiority in diode‐like ion transport, temperature‐ and pH‐regulated salinity gradient energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI