亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ECSU-Net: An Embedded Clustering Sliced U-Net Coupled With Fusing Strategy for Efficient Intervertebral Disc Segmentation and Classification

分割 人工智能 计算机科学 模式识别(心理学) 聚类分析 椎骨 嵌入 图像分割 卷积神经网络 计算机视觉 解剖 医学
作者
Anam Nazir,Muhammad Nadeem Cheema,Bin Sheng,Ping Li,Huating Li,Guangtao Xue,Jing Qin,Jinman Kim,Dagan Feng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 880-893 被引量:32
标识
DOI:10.1109/tip.2021.3136619
摘要

Automatic vertebra segmentation from computed tomography (CT) image is the very first and a decisive stage in vertebra analysis for computer-based spinal diagnosis and therapy support system. However, automatic segmentation of vertebra remains challenging due to several reasons, including anatomic complexity of spine, unclear boundaries of the vertebrae associated with spongy and soft bones. Based on 2D U-Net, we have proposed an Embedded Clustering Sliced U-Net (ECSU-Net). ECSU-Net comprises of three modules named segmentation, intervertebral disc extraction (IDE) and fusion. The segmentation module follows an instance embedding clustering approach, where our three sliced sub-nets use axis of CT images to generate a coarse 2D segmentation along with embedding space with the same size of the input slices. Our IDE module is designed to classify vertebra and find the inter-space between two slices of segmented spine. Our fusion module takes the coarse segmentation (2D) and outputs the refined 3D results of vertebra. A novel adaptive discriminative loss (ADL) function is introduced to train the embedding space for clustering. In the fusion strategy, three modules are integrated via a learnable weight control component, which adaptively sets their contribution. We have evaluated classical and deep learning methods on Spineweb dataset-2. ECSU-Net has provided comparable performance to previous neural network based algorithms achieving the best segmentation dice score of 95.60% and classification accuracy of 96.20%, while taking less time and computation resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Billy发布了新的文献求助10
13秒前
Ava应助LeezZZZ采纳,获得10
51秒前
曹年跃完成签到,获得积分10
54秒前
犹豫的踏歌完成签到,获得积分10
1分钟前
善学以致用应助Elton采纳,获得10
1分钟前
1分钟前
1分钟前
Elton发布了新的文献求助10
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
么么完成签到 ,获得积分10
1分钟前
丘比特应助Elton采纳,获得10
1分钟前
852应助一口辰采纳,获得10
1分钟前
华仔应助俞思含采纳,获得10
1分钟前
1分钟前
Elton发布了新的文献求助10
1分钟前
1分钟前
ly发布了新的文献求助10
1分钟前
俞思含发布了新的文献求助10
1分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
2分钟前
bcc666发布了新的文献求助10
2分钟前
星辰大海应助Elton采纳,获得10
2分钟前
充电宝应助bcc666采纳,获得10
2分钟前
2分钟前
Elton发布了新的文献求助10
2分钟前
2分钟前
凯当以慷发布了新的文献求助10
2分钟前
2分钟前
沉静的雁菡应助欣欣采纳,获得10
2分钟前
凯当以慷完成签到,获得积分10
2分钟前
打打应助三个土拔鼠采纳,获得10
2分钟前
kanoz完成签到 ,获得积分10
3分钟前
automan发布了新的文献求助10
3分钟前
automan完成签到,获得积分10
3分钟前
3分钟前
科研通AI5应助精灵夜雨采纳,获得10
3分钟前
柏风华发布了新的文献求助10
3分钟前
rnf完成签到,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803