材料科学
兴奋剂
掺杂剂
薄板电阻
碳纳米管
纳米技术
透射率
导电体
拉曼光谱
电导率
光电子学
聚吡咯
复合材料
聚合物
光学
化学
聚合
物理化学
物理
图层(电子)
作者
Zeyao Zhang,Wenqing Yan,Yuguang Chen,Shaochuang Chen,Guodong Jia,Jian Sheng,Sheng Zhu,Zihan Xu,Xinrui Zhang,Yan Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-12-20
卷期号:16 (1): 1063-1071
被引量:36
标识
DOI:10.1021/acsnano.1c08812
摘要
Possessing excellent electronic and mechanical properties and great stability, single-walled carbon nanotubes (SWCNTs) are exceptionally attractive in fabricating flexible transparent conductive films. Doping is a key step to further enhance the conductivity of the SWCNT films and the reliable doping is highly needed. We developed a feasible strategy that uses solid acids such as phosphotungstic acid (PTA) to dope the SWCNT films stably relying on the nonvolatility of the dopants. The sheet resistance of the films was reduced to around a half of the original value meanwhile with no obvious change in transmittance. The doping effect maintained during a 700 days' observation. The excellent flexibility of the PTA-doped films was demonstrated by a bending test of 1000 cycles, during which the sheet resistance and transmittance was basically unaffected. The blue shifts of G band in the Raman spectra and the increase of work function measured by the Kelvin probe force microscopy both reveal the p-type doping of the films by PTA. The strong acidity of PTA plays a key role in the doping effect by increasing the redox potential of the ambient O2 and thus the Fermi level of the SWCNTs is brought down. The great feasibility and robustness of our doping strategy are desirable in the practical application of SWCNT-based flexible transparent conductive films. This strategy can be extended to the p-type doping of various CNT-based assemblies (such as sponges and forests) as well as other material families, expanding the application spectrum of polyacids.
科研通智能强力驱动
Strongly Powered by AbleSci AI