Negative grey relational model and measurement of the reverse incentive effect of fields medal

灰色关联分析 关系模型 相似性(几何) 关系数据库 计算机科学 人工智能 数据挖掘 数学 统计 图像(数学)
作者
Sifeng Liu
标识
DOI:10.1108/gs-10-2021-0148
摘要

Purpose The purpose of this paper is to construct some negative grey relational analysis models to measure the relationship between reverse sequences. Design/methodology/approach The definition of reverse sequence has been given at first based on analysis of relative position and change trend of sequences. Then, several different negative grey relational analysis models, such as the negative grey similarity relational analysis model, the negative grey absolute relational analysis model, the negative grey relative relational analysis model, the negative grey comprehensive relational analysis model and the negative Deng’s grey relational analysis model have been put forward based on the corresponding common grey relational analysis models. The properties of the new models have been studied. Findings The negative grey relational analysis models proposed in this paper can solve the problem of relationship measurement of reverse sequences effectively. All the new negative grey relational degree satisfying the requirements of normalization and reversibility. Practical implications The proposed negative grey relational analysis models can be used to measure the relationship between reverse sequences. As a living example, the reverse incentive effect of winning Fields Medal on the research output of winners is measured based on the research output data of the medalists and the contenders using the proposed negative grey relational analysis model. Originality/value The definition of reverse sequence and the negative grey similarity relational analysis model, the negative grey absolute relational analysis model, the negative grey relative relational analysis model, the negative grey comprehensive relational analysis model and the negative Deng’s grey relational analysis model are first proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别摆烂了发布了新的文献求助10
4秒前
4秒前
啊哭发布了新的文献求助10
5秒前
PhD_Lee73完成签到 ,获得积分10
8秒前
顶顶小明完成签到,获得积分10
10秒前
yx_cheng应助博修采纳,获得50
10秒前
Heng完成签到,获得积分10
11秒前
14秒前
传奇3应助ppap4采纳,获得10
16秒前
银河以北鸿艳最美完成签到,获得积分10
17秒前
19秒前
Owen应助东堂采纳,获得10
19秒前
Lucas应助伶俐的如松采纳,获得10
20秒前
礼礼发布了新的文献求助10
20秒前
啦啦啦完成签到,获得积分10
21秒前
Owen应助别摆烂了采纳,获得10
21秒前
善学以致用应助别摆烂了采纳,获得10
21秒前
Liufgui应助别摆烂了采纳,获得10
21秒前
Jasper应助别摆烂了采纳,获得10
21秒前
天天快乐应助别摆烂了采纳,获得10
21秒前
CipherSage应助别摆烂了采纳,获得10
21秒前
今后应助别摆烂了采纳,获得10
21秒前
FashionBoy应助别摆烂了采纳,获得10
21秒前
天天快乐应助别摆烂了采纳,获得10
21秒前
orixero应助别摆烂了采纳,获得10
22秒前
Rondab应助青云采纳,获得10
22秒前
23秒前
syvshc应助淡淡涫采纳,获得10
23秒前
28秒前
Alice完成签到,获得积分10
28秒前
充电宝应助斜玉采纳,获得10
29秒前
Alice发布了新的文献求助10
30秒前
细腻千秋完成签到 ,获得积分10
32秒前
可鹿丽发布了新的文献求助10
34秒前
34秒前
36秒前
36秒前
Claudia完成签到,获得积分10
38秒前
Allen发布了新的文献求助10
39秒前
qcwindchasing完成签到 ,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080