Negative grey relational model and measurement of the reverse incentive effect of fields medal

灰色关联分析 关系模型 相似性(几何) 关系数据库 计算机科学 人工智能 数据挖掘 数学 统计 图像(数学)
作者
Sifeng Liu
标识
DOI:10.1108/gs-10-2021-0148
摘要

Purpose The purpose of this paper is to construct some negative grey relational analysis models to measure the relationship between reverse sequences. Design/methodology/approach The definition of reverse sequence has been given at first based on analysis of relative position and change trend of sequences. Then, several different negative grey relational analysis models, such as the negative grey similarity relational analysis model, the negative grey absolute relational analysis model, the negative grey relative relational analysis model, the negative grey comprehensive relational analysis model and the negative Deng’s grey relational analysis model have been put forward based on the corresponding common grey relational analysis models. The properties of the new models have been studied. Findings The negative grey relational analysis models proposed in this paper can solve the problem of relationship measurement of reverse sequences effectively. All the new negative grey relational degree satisfying the requirements of normalization and reversibility. Practical implications The proposed negative grey relational analysis models can be used to measure the relationship between reverse sequences. As a living example, the reverse incentive effect of winning Fields Medal on the research output of winners is measured based on the research output data of the medalists and the contenders using the proposed negative grey relational analysis model. Originality/value The definition of reverse sequence and the negative grey similarity relational analysis model, the negative grey absolute relational analysis model, the negative grey relative relational analysis model, the negative grey comprehensive relational analysis model and the negative Deng’s grey relational analysis model are first proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ridley完成签到,获得积分10
1秒前
2秒前
ss完成签到,获得积分10
2秒前
kol完成签到,获得积分10
2秒前
专注的水壶完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
张广雪发布了新的文献求助30
3秒前
愤怒的夜绿完成签到,获得积分10
4秒前
5秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
无钱发布了新的文献求助10
6秒前
拾柒完成签到,获得积分10
6秒前
ze发布了新的文献求助10
6秒前
Makta完成签到,获得积分10
7秒前
舒庆春完成签到,获得积分10
7秒前
radom完成签到,获得积分10
7秒前
明亮飞丹完成签到,获得积分20
7秒前
秋月黄完成签到 ,获得积分10
7秒前
7秒前
Orange应助azi木木采纳,获得10
8秒前
芒果完成签到,获得积分10
8秒前
111完成签到,获得积分10
9秒前
yggmdggr完成签到,获得积分10
9秒前
香蕉觅云应助Tail采纳,获得10
9秒前
Alisha发布了新的文献求助10
9秒前
长理物电强完成签到,获得积分10
10秒前
pihriyyy完成签到,获得积分20
10秒前
Rain1god完成签到,获得积分10
10秒前
jessicazhong完成签到,获得积分10
10秒前
Xu发布了新的文献求助30
11秒前
Blackrose2412完成签到,获得积分10
12秒前
李晴发布了新的文献求助10
12秒前
叶燕完成签到 ,获得积分10
12秒前
Jeneration完成签到 ,获得积分10
13秒前
木棉完成签到,获得积分10
14秒前
Rencal完成签到 ,获得积分10
14秒前
鹿若风完成签到,获得积分10
14秒前
慕容杏子完成签到,获得积分10
15秒前
一路向阳完成签到,获得积分10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118349
求助须知:如何正确求助?哪些是违规求助? 4324327
关于积分的说明 13471622
捐赠科研通 4157281
什么是DOI,文献DOI怎么找? 2278348
邀请新用户注册赠送积分活动 1280132
关于科研通互助平台的介绍 1218766