Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants

光催化 材料科学 可见光谱 量子点 纳米材料 光化学 带隙 纳米技术 氧化剂 化学工程 纳米颗粒 降级(电信) 激进的 光电子学 化学 催化作用 有机化学 工程类 电信 计算机科学
作者
Yang Wang,Xian Wu,Jianqiao Liu,Zhaoxia Zhai,Zhouhao Yang,Jincheng Xia,Shuai Deng,Xiao Qu,Haipeng Zhang,Di Wu,Liguo Shen,Ce Fu,Qianru Zhang
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (1): 107091-107091 被引量:74
标识
DOI:10.1016/j.jece.2021.107091
摘要

Functional nanomaterials are desirable in the sustainable photocatalytic degradation of antibiotic contaminants, but the development of nanostructured photocatalysts is facing fatal challenges not only in synthesis strategies but also in property control. Herein, a facile synthesis strategy is accomplished by the green synthesis of SnO 2 quantum dots (QDs) engineered by Mo modification. The effects of Mo incorporation on the microstructural, compositional, electrical and optical properties are discussed. The electronic band structure of SnO 2 QDs is modified by Mo dopants, which reduce the band gap by changing the position of the conduction band edge. The Mo-modified band structure provides the SnO 2 QDs with visible-light driven photocatalytic abilities in the removal of antibiotics as emerging organic contaminants. The nanostructured photocatalysts exhibit proficient performances in the degradation of tetracycline hydrochloride. The degradation efficiency is up to 96.5% when the antibiotic concentration is 25 mg/L and the rate constant is 0.033 min −1 . The hydroxyl radicals, produced by the oxidation of water, are determined to be the main active species in the photocatalytic process. The valence band edge over 3 eV guarantees the strong oxidizing abilities of photogenerated holes to create highly active hydroxyl radicals for the efficient photocatalytic degradation. First principle calculations based on the density functional theory reveal the mechanism of Mo modification, illustrating that Mo 4d electrons extend the conduction band edge to the Fermi level. The present work provides a green synthesis strategy and mechanism insights for band structure modification of SnO 2 QDs as proficient visible-light driven photocatalysts for environmental remediation. • Mo-modified SnO 2 for visible-light driven photocatalytic degradation of antibiotics. • Degradation efficiency up to 96.5% for TC antibiotic of 25 mg/L within 90 min. • Engineered band structure with band gap of 2.89 eV benefits photocatalytic activity. • Mo 4d electrons extend the conduction band to the Fermi level. • Mechanism of Mo modification on semiconductor photocatalysts revealed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐天发布了新的文献求助10
刚刚
Jasper应助etqs24采纳,获得10
1秒前
包容的自行车关注了科研通微信公众号
1秒前
1秒前
Ztw发布了新的文献求助10
1秒前
3秒前
wang关注了科研通微信公众号
3秒前
Rqbnicsp完成签到,获得积分10
3秒前
5秒前
INKMAN完成签到,获得积分10
5秒前
6秒前
若水应助九九采纳,获得10
7秒前
伯赏笑白发布了新的文献求助10
7秒前
8秒前
xxxx发布了新的文献求助10
8秒前
小二郎应助幸福的乐巧采纳,获得10
8秒前
haha发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
今后应助强doig采纳,获得30
16秒前
orixero应助qinsu采纳,获得10
16秒前
16秒前
17秒前
19秒前
隐形曼青应助haha采纳,获得10
20秒前
皮皮球完成签到 ,获得积分10
21秒前
23秒前
李爱国应助科研通管家采纳,获得30
24秒前
24秒前
张啦啦应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
达达完成签到,获得积分10
24秒前
cctv18应助科研通管家采纳,获得10
24秒前
cctv18应助科研通管家采纳,获得10
24秒前
cctv18应助科研通管家采纳,获得10
24秒前
cctv18应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596