已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LR-GNN: a graph neural network based on link representation for predicting molecular associations

计算机科学 嵌入 图形 代表(政治) 节点(物理) 编码器 链接(几何体) 分子图 卷积神经网络 联想(心理学) 人工智能 自编码 数据挖掘 人工神经网络 理论计算机科学 模式识别(心理学) 法学 操作系统 哲学 工程类 政治学 认识论 政治 结构工程 计算机网络
作者
Chuanze Kang,Han Zhang,Zhuo Liu,Shenwei Huang,Yanbin Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:22
标识
DOI:10.1093/bib/bbab513
摘要

In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein-protein interaction and drug-drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miga完成签到,获得积分20
2秒前
2秒前
3秒前
魔山西红柿完成签到,获得积分10
7秒前
yao发布了新的文献求助10
9秒前
du完成签到,获得积分10
9秒前
毛毛酱酱酱给毛毛酱酱酱的求助进行了留言
10秒前
10秒前
JamesPei应助阿峰采纳,获得10
11秒前
ourWorks发布了新的文献求助10
12秒前
Alinf完成签到,获得积分10
15秒前
15秒前
15秒前
看文献看到秃头完成签到,获得积分10
18秒前
霖宸羽发布了新的文献求助10
19秒前
20秒前
山月鹿完成签到,获得积分10
21秒前
Light应助Xiaoli采纳,获得10
21秒前
aobacae发布了新的文献求助20
22秒前
英姑应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
今后应助科研通管家采纳,获得10
22秒前
丁sir发布了新的文献求助10
23秒前
25秒前
26秒前
陈鑫浩完成签到,获得积分10
26秒前
29秒前
小蘑菇应助霖宸羽采纳,获得10
29秒前
zhaoming发布了新的文献求助10
31秒前
wdw2501发布了新的文献求助10
32秒前
33秒前
艾利克斯发布了新的文献求助10
33秒前
33秒前
33秒前
35秒前
wangrblzu应助勤恳涵菡采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766902
求助须知:如何正确求助?哪些是违规求助? 3311339
关于积分的说明 10158179
捐赠科研通 3026407
什么是DOI,文献DOI怎么找? 1661172
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755846