亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LR-GNN: a graph neural network based on link representation for predicting molecular associations

计算机科学 嵌入 图形 代表(政治) 节点(物理) 编码器 链接(几何体) 分子图 卷积神经网络 人工智能 自编码 数据挖掘 人工神经网络 理论计算机科学 模式识别(心理学) 操作系统 法学 工程类 政治学 政治 结构工程 计算机网络
作者
Chuanze Kang,Han Zhang,Zhuo Liu,Shenwei Huang,Yanbin Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:58
标识
DOI:10.1093/bib/bbab513
摘要

Abstract In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein–protein interaction and drug–drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
9秒前
12秒前
量子星尘发布了新的文献求助10
15秒前
且听风吟完成签到,获得积分10
16秒前
27秒前
39秒前
嘟嘟嘟嘟发布了新的文献求助10
46秒前
传奇3应助JodieZhu采纳,获得30
49秒前
53秒前
56秒前
合适的哑铃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
码头整点薯条完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
观潮应助码头整点薯条采纳,获得10
1分钟前
Jasper应助码头整点薯条采纳,获得10
1分钟前
1分钟前
1分钟前
春宇浩然发布了新的文献求助10
2分钟前
2分钟前
roro熊完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
JodieZhu完成签到,获得积分10
2分钟前
2分钟前
义气丹雪应助JodieZhu采纳,获得30
2分钟前
2分钟前
糟糕的颜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Wei发布了新的文献求助50
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402