LR-GNN: a graph neural network based on link representation for predicting molecular associations

计算机科学 嵌入 图形 代表(政治) 节点(物理) 编码器 链接(几何体) 分子图 卷积神经网络 人工智能 自编码 数据挖掘 人工神经网络 理论计算机科学 模式识别(心理学) 操作系统 法学 工程类 政治学 政治 结构工程 计算机网络
作者
Chuanze Kang,Han Zhang,Zhuo Liu,Shenwei Huang,Yanbin Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:58
标识
DOI:10.1093/bib/bbab513
摘要

Abstract In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein–protein interaction and drug–drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助baiyang99采纳,获得10
刚刚
Giggle完成签到,获得积分10
3秒前
陈晨发布了新的文献求助10
4秒前
天天快乐应助粗心的善若采纳,获得10
4秒前
5秒前
超级感谢大佬滴帮助完成签到,获得积分10
6秒前
9秒前
光能使者完成签到,获得积分10
10秒前
11秒前
12秒前
qiuli完成签到,获得积分10
12秒前
16秒前
冂xx易云完成签到,获得积分10
18秒前
嬴政飞发布了新的文献求助10
18秒前
苏苏完成签到,获得积分10
19秒前
19秒前
lpk完成签到,获得积分10
19秒前
科研通AI6应助guyutang采纳,获得20
20秒前
20秒前
22秒前
qiuli发布了新的文献求助10
23秒前
24秒前
hh完成签到,获得积分20
24秒前
儒雅的蜜粉完成签到,获得积分10
25秒前
shufessm完成签到,获得积分0
26秒前
寇博翔发布了新的文献求助10
27秒前
hh发布了新的文献求助10
27秒前
寻绿完成签到,获得积分10
28秒前
cora完成签到 ,获得积分10
33秒前
万能图书馆应助海蓝博采纳,获得10
35秒前
36秒前
lpk发布了新的文献求助10
36秒前
41秒前
42秒前
43秒前
豪哥发布了新的文献求助10
43秒前
褪色完成签到,获得积分10
43秒前
xiaoyu完成签到,获得积分10
43秒前
43秒前
ljy发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478