LR-GNN: a graph neural network based on link representation for predicting molecular associations

计算机科学 嵌入 图形 代表(政治) 节点(物理) 编码器 链接(几何体) 分子图 卷积神经网络 人工智能 自编码 数据挖掘 人工神经网络 理论计算机科学 模式识别(心理学) 操作系统 法学 工程类 政治学 政治 结构工程 计算机网络
作者
Chuanze Kang,Han Zhang,Zhuo Liu,Shenwei Huang,Yanbin Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:58
标识
DOI:10.1093/bib/bbab513
摘要

Abstract In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein–protein interaction and drug–drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾一完成签到,获得积分10
刚刚
陈昱桦完成签到,获得积分10
2秒前
橘子石榴完成签到,获得积分10
3秒前
在水一方应助DDD采纳,获得10
3秒前
柳树完成签到,获得积分10
3秒前
hony完成签到,获得积分10
5秒前
5秒前
6秒前
香蕉完成签到,获得积分10
7秒前
花花完成签到,获得积分10
7秒前
浮尘完成签到 ,获得积分0
10秒前
11秒前
任伟超完成签到,获得积分10
13秒前
14秒前
Isabel完成签到 ,获得积分10
15秒前
木雨亦潇潇完成签到,获得积分10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
amberzyc应助科研通管家采纳,获得10
18秒前
LL完成签到 ,获得积分10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
cx应助科研通管家采纳,获得10
18秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
guozizi完成签到,获得积分10
22秒前
wwl完成签到,获得积分10
24秒前
30完成签到 ,获得积分10
25秒前
guozizi发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815