盐度
非生物成分
耐盐性
化学
盐(化学)
土壤水分
碱土
极端环境
生物
环境化学
细菌
生态学
遗传学
物理化学
作者
Yi Xu,Guoxiang You,Mairan Zhang,Dengyun Peng,Zewei Jiang,Suting Qi,Shihong Yang,Jun Hou
标识
DOI:10.1016/j.scitotenv.2021.152246
摘要
Growing evidence points to the pivotal roles of salt accumulation in mediating antibiotic resistance genes (ARGs) spread in soil, whereas how salt mediates ARGs dissemination remains unknown. Herein, the effects of neutral or alkaline (Ne/Al) salt at low, moderate and high levels (Ne/Al-L, Ne/Al-M, Ne/Al-H) on the dissemination of ten typical ARGs in soils were explored, by simultaneously considering the roles of salinity stress and response strategies of microbes. In the soils amended with Ne/Al-L and Al-M salt, the dissemination of ARGs was negligible and the relative abundances of ARGs and mobile genetic elements (MGEs) were decreased. However, Ne-M and Al-H salt contributed to the dissemination of ARGs in soils, with the significantly increased absolute and relative abundances of ARGs and MGEs. In Ne-H soil, although the absolute abundance of ARGs declined drastically due to serious oxidative damage, their relative abundances were promoted. The facilitated ARGs transfer was potentially related to the excessive generation of intracellular reactive oxygen species and increased activities of DNA repair enzymes involved in SOS system. In addition, the activated intracellular protective response including quorum sensing and energy metabolism largely provided essential factors for ARGs dissemination. The co-occurrence of ARGs and over-expressed salt-tolerant genes in specific halotolerant bacteria further suggested the selection of salt stress on ARGs. Moreover, less disturbance of alkaline salt than neutral salt on ARGs evolution was observed, due to the lower abiotic stress and selective pressure on microbes. This study highlights that soil salinity-sodicity could dose-dependently reshape the dissemination of ARGs and community structure of microbes, which may increase the ecological risks of ARGs in agricultural environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI