Supply chain resilience in the UK during the coronavirus pandemic: A resource orchestration perspective

编配 供应链 资源(消歧) 弹性(材料科学) 业务 产业组织 计算机科学 营销 艺术 音乐剧 计算机网络 物理 视觉艺术 热力学
作者
Maciel M. Queiroz,Samuel Fosso Wamba,Charbel José Chiappetta Jabbour,Márcio Cardoso Machado
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:245: 108405-108405 被引量:155
标识
DOI:10.1016/j.ijpe.2021.108405
摘要

The COVID-19 pandemic caused significant disruptions to global operations and supply chains. While the huge impact of the pandemic has nurtured important literature over the last couple of years, little is being said about the role of resource orchestration in supporting resilience in highly disruptive contexts. Thus, this study aims to this knowledge gap by proposing an original model to explore supply chain resilience (SCRE) antecedents, considering supply chain alertness (SCAL) as a central point to support resilience. This study focuses on the resource orchestration theory (ROT) to design a conceptual model. The partial least squares structural equation modeling (PLS-SEM) served to validate the model, exploring data from the UK supply chain decision-makers. The study reveals a number of both expected and unexpected findings. These include the evidence that supply chain disruption orientation (SCDO) has a strong positive effect on the SCAL. In addition, SCAL plays a strong positive effect in resource reconfiguration (RREC), supply chain efficiency (SCEF) and SCRE. We further identified a partial mediation effect of RREC on the relationship between SCAL and SCRE. Surprisingly, it appeared that SCAL strongly influences SCEF, while SCEF itself does not create any significant effect on SCRE. For managers and practitioners, the importance of resource orchestration as a decisive approach to adequately respond to huge disruptions is clearly highlighted by our results. Finally, this paper helps to grasp better how important resource orchestration in operations and supply chains remains for appropriate responses to high disruptions such as the COVID-19 impacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao完成签到,获得积分10
刚刚
北望完成签到,获得积分20
1秒前
XD824完成签到,获得积分10
2秒前
2秒前
仔wang完成签到,获得积分10
2秒前
2秒前
Marvel发布了新的文献求助10
2秒前
3秒前
番番茄完成签到,获得积分10
3秒前
科目三应助Hhh采纳,获得10
3秒前
科目三应助苏曼青采纳,获得10
4秒前
XD824发布了新的文献求助10
5秒前
6秒前
jackdawjo发布了新的文献求助10
7秒前
正直的小猫咪完成签到,获得积分10
8秒前
lxp完成签到,获得积分20
8秒前
9秒前
10秒前
大模型应助clcl采纳,获得10
10秒前
大模型应助牛小牛采纳,获得10
10秒前
11秒前
11秒前
12秒前
hao发布了新的文献求助10
12秒前
ererrrr完成签到,获得积分10
12秒前
Marvel完成签到,获得积分20
12秒前
12秒前
blank完成签到,获得积分10
12秒前
科研通AI5应助精明的期待采纳,获得10
13秒前
科研通AI5应助精明的期待采纳,获得10
13秒前
14秒前
lxp发布了新的文献求助10
14秒前
jackdawjo完成签到,获得积分10
14秒前
红岸完成签到,获得积分10
15秒前
深情安青应助传统的白桃采纳,获得10
15秒前
24号甜冰茶完成签到,获得积分10
15秒前
清雨桩完成签到,获得积分10
16秒前
16秒前
Layla101发布了新的文献求助10
16秒前
Hhh发布了新的文献求助10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285