In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries

拉曼光谱 电解质 电化学 傅里叶变换红外光谱 氧化还原 阳极 材料科学 电化学能量转换 电极 原位 纳米技术 化学工程 阴极 催化作用 储能 化学 物理化学 物理 光学 有机化学 工程类 量子力学 功率(物理) 冶金
作者
Fan Gao,Xiangdong Tian,Jia‐Sheng Lin,Jin‐Chao Dong,Xiu‐Mei Lin,Jianfeng Li
出处
期刊:Nano Research [Springer Nature]
卷期号:16 (4): 4855-4866 被引量:42
标识
DOI:10.1007/s12274-021-4044-1
摘要

As state-of-the-art electrochemical energy conversion and storage (EECS) techniques, fuel cells and rechargeable batteries have achieved great success in the past decades. However, modern societies’ ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance, which mainly rely on the rational design of catalysts, electrode materials, and electrode/electrolyte interfaces in EESC, based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions. Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques, such as in situ Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopy. These techniques can provide characteristic spectroscopic information of molecules and/or crystals, which are sensitive to structure/phase changes resulted from different electrochemical working conditions, hence allowing for intermediates identification and mechanisms understanding. This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman, FTIR, and XRD spectroscopy. The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction (ORR) in fuel cells, on representative high capacity and/or resource abundance cathodes and anodes, and on the solid electrolyte interface (SEI) in rechargeable batteries are discussed. We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助赖道之采纳,获得10
1秒前
依古比古完成签到 ,获得积分10
3秒前
汎影发布了新的文献求助10
3秒前
小二完成签到,获得积分10
3秒前
4秒前
6秒前
顾矜应助长情洙采纳,获得10
6秒前
monere发布了新的文献求助30
6秒前
Xiaoxiao应助汉关采纳,获得10
8秒前
8秒前
汎影完成签到,获得积分10
9秒前
10秒前
Chen发布了新的文献求助10
12秒前
WW完成签到,获得积分10
12秒前
14秒前
hyjcnhyj完成签到,获得积分10
15秒前
英姑应助赖道之采纳,获得10
16秒前
18秒前
研友_LXdbaL发布了新的文献求助30
18秒前
思源应助单薄新烟采纳,获得10
19秒前
19秒前
20秒前
Zz完成签到,获得积分10
20秒前
Prandtl完成签到 ,获得积分10
22秒前
23秒前
zfzf0422完成签到 ,获得积分10
24秒前
上官若男应助jackie采纳,获得10
24秒前
24秒前
我是站长才怪应助Benliu采纳,获得20
25秒前
25秒前
zh20130完成签到,获得积分10
25秒前
25秒前
TT发布了新的文献求助10
26秒前
Star1983发布了新的文献求助10
26秒前
研友_LXdbaL完成签到,获得积分10
27秒前
28秒前
在水一方应助66采纳,获得10
29秒前
29秒前
29秒前
缘一发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808