A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq

鉴定(生物学) 人工智能 可扩展性 机器学习 管道(软件) 数据挖掘 计算机科学 相似性(几何) 工作流程 数据库 生物 植物 图像(数学) 程序设计语言
作者
Xiaobo Sun,Xiaochu Lin,Ziyi Li,Hao Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:16
标识
DOI:10.1093/bib/bbab567
摘要

The cell type identification is among the most important tasks in single-cell RNA-sequencing (scRNA-seq) analysis. Many in silico methods have been developed and can be roughly categorized as either supervised or unsupervised. In this study, we investigated the performances of 8 supervised and 10 unsupervised cell type identification methods using 14 public scRNA-seq datasets of different tissues, sequencing protocols and species. We investigated the impacts of a number of factors, including total amount of cells, number of cell types, sequencing depth, batch effects, reference bias, cell population imbalance, unknown/novel cell type, and computational efficiency and scalability. Instead of merely comparing individual methods, we focused on factors' impacts on the general category of supervised and unsupervised methods. We found that in most scenarios, the supervised methods outperformed the unsupervised methods, except for the identification of unknown cell types. This is particularly true when the supervised methods use a reference dataset with high informational sufficiency, low complexity and high similarity to the query dataset. However, such outperformance could be undermined by some undesired dataset properties investigated in this study, which lead to uninformative and biased reference datasets. In these scenarios, unsupervised methods could be comparable to supervised methods. Our study not only explained the cell typing methods' behaviors under different experimental settings but also provided a general guideline for the choice of method according to the scientific goal and dataset properties. Finally, our evaluation workflow is implemented as a modularized R pipeline that allows future evaluation of new methods. Availability: All the source codes are available at https://github.com/xsun28/scRNAIdent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哎哟很烦发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
Tim完成签到,获得积分10
1秒前
CX发布了新的文献求助10
2秒前
2秒前
Meiyu驳回了orixero应助
3秒前
FashionBoy应助成是非采纳,获得10
3秒前
舒适涵山完成签到,获得积分10
3秒前
lll完成签到,获得积分10
3秒前
Vincent完成签到,获得积分10
4秒前
杏林靴子完成签到,获得积分10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
NMZN发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
wentto发布了新的文献求助10
6秒前
Vincent发布了新的文献求助10
7秒前
Tim发布了新的文献求助10
7秒前
fusheng完成签到 ,获得积分10
8秒前
cindy完成签到 ,获得积分10
9秒前
10秒前
脑洞疼应助曾经电源采纳,获得10
11秒前
12秒前
bible发布了新的文献求助10
12秒前
13秒前
13秒前
zjj完成签到,获得积分10
14秒前
15秒前
123完成签到,获得积分10
16秒前
闪电完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011